

MAHIDOL UNIVERSITY Wisdom of the Land

Radiology Instrumentation

ผศ.ดร.นภาพงษ์ พงษ์นภางค์ ภาควิชารังสีเทคนิค คณะเทคนิคการแพทย์ มหาวิทยาลัยมหิดล

Radiological Imaging Modalities

- X-Rays production
- Radiography
 - Plane film/screen
 - Digital
- Fluoroscopy
 - Conventional II
 - Digital
- Mammography
- Computed Tomography
- Dental

Plain Radiography

X-RAY TUBE

 MADE OF THIN PYREX GLASS OR METAL ENCLOSURE TO WITHSTAND HIGH HEAT LOAD AND MINIMIZE X-RAY ABSORPTON

- IS GAS EVAUCUATED
- so electrons won't collide with the air molecules in the tube

 The X-Ray tube is the single most important component of the radiographic system. It is the part that produces the Xrays

Protective housing

Made of lead & steel

 When x-rays are produced, they are emitted <u>isotropically</u>

-Equal intensity in all directions

• We only use x-rays emitted through the window or port

-Called the useful or primary beam

Protective housing

• X-rays that escape through the protective housing are leakage radiation

 Provides mechanical support for the tube and protects from rough handling

Protective housing

- Some tubes contain oil that serves as an insulator against electric shock and as a thermal cushion
 - -Dissipate heat
- Some protective housing has cooling fan to air-cool the tube and oil

TUBE HOUSING MADE OF LEAD & STEEL

Internal components Cathode

 The negative side of the tube and has two primary parts

-A filament and focusing cup

• Filament = a coil of wire about 2mm in diameter and 1 or 2 cm long.

Cathode

Filament
– Dual-filament

- Copper bar Glass envelope Electron stream Filament Anode Tungsten target Useful x-rays
- Focusing cup
 Negatively charged

Focusing cup

Copyright © 2005 Mosby, Inc. All Rights Reserved.

Tungsten

- Filaments are usually made of tungsten
- Tungsten provides higher thermionic emission than other metals
- Tungsten has a very high melting point

Filament

 When current (mA) is applied to the coil of wire electron are ejected

- The outer-shell electrons of the filament atom are "boiled off".
 - -This is known as thermionic emission

THERMIONIC EMISSION

Focusing cup

• The filament is embedded in a metal cup that has a negative charge

 Boiled off e- tend to spread out due to electrostatic repulsion. The focusing cup confines the e- cloud to a small area Electrostatic Repulsion Spreads Electrons Out

Focused By Repulsion From Negative Charge Of Focusing Cup

kVp = energy mAs = amount

Copyright © 2005 Mosby, Inc. All Rights Reserved.

Filament Current

- When the x-ray imaging system is first turned on, a low current passes through the filament to warm it and prepare it for the thermal jolt necessary for x-ray production
- The current is not enough to energize the tube, just warm the wire of the filament

Space-charge effect

- The cloud of e- = space charge
- As the space charge becomes more negative by the boiling off of more electrons it makes it difficult for more e- to be emitted
 - Electrostatic repulsion
 - Space-charge effect
 - Space-charge limiting at low kVp & high mA

Copyright © 2005 Mosby, Inc. All Rights Reserved.

Dual-focus tubes

- Most diagnostic tubes have two focal spots; large & small
- Large is used when large body parts are imaged
- Small is used when better spatial resolution is desired better detail
- Filament size

Copyright © 2005 Mosby, Inc. All Rights Reserved.

Dual-focus tubes

⁽A, Courtesy The Machlett Laboratories, Inc.)

Anode

- Anode is the positive side of the x-ray tube
- The anode conducts electricity, radiates heat and contains the target
- Two types of anodes
 - Stationary & Rotating

Stationary Anode

- Used for dental x-rays, some portable imaging
- Used when high tube current and power are not required because they are not capable of producing high-intensity x-ray beams in a short time

ANODE

Now let's look at the anode side of the x-ray tube. Remember that the anode is the positively charged side of the tube, where the electrons strike the metal of the anode and produce the

Anode Function

• Mechanical support for the target

- Dissipates heat
 - 99% of the kinetic energy from the e- is converted into heat; 1% is converted into xrays
 - Copper, molybdenum and graphite are common anode material

A layered anode increases heat capacity

Copyright © 2005 Mosby, Inc. All Rights Reserved.

Target

 Is the area of the anode struck by the efrom the cathode

Tungsten is the material of choice for the target in general radiography

STATIONARY ANODE

X-ray equipment with stationary anode tubes are used in circumstances when less heat is generated in the anode. This equipment may be used for shorter exposure times or less

Rotating Anode

- Is powered by an induction motor
- The stator is on the outside of the glass, consist of a series of electromagnets
- The rotor is a shaft made of bars of copper and soft iron built into one mass

Electromagnetic induction

- As current is applied to the stator sequentially so the magnetic field rotates on the axis of the stator
- This magnetic field interacts with the metal (ferromagnetic rotor) causing it to rotate in unison with the magnetic field of the stator

Electromagnetic Induction Motor

- Anode speed
- Average 3,600 rpm (revolutions per minute)
- High capacity 10,000 rpm
- Anode Cooling Chart – Heat Units (HU)

Dead-man switch

- Rotor/Prep applies current (mA) to the tube
 - Allows rotor to accelerate to its designed RPM. Rotor stops about 1 min after exposure
 - Filament current is increased to create e-cloud
- Exposure applies voltage (kV) to make exposure

Focal spot

 The area of the anode's target where xrays are emitted

• The smaller the focal spot the better the resolution of the resultant image

Focal spot

 Unfortunately, as the size of the focal spot decreases, the heat of the target is concentrated into a smaller area

• This is the limiting factor to focal spot size

Line-focus principle

 By angling the target, the effective area of the target is much smaller than the actual area of electron interaction

Line-focus principle

Effective
Focal
Spot

Target angle

- The smaller the target angle the smaller the effective focal spot
- Angles from 5 degrees to 15 degrees

 Biangular targets are available that produce two focal spot sizes

Biangular targets

The second factor of effective focal spot is the incoming size of e- stream

Copyright © 2005 Mosby, Inc. All Rights Reserved.

Focal spot size of the cathode

Anode Heel Effect

- Because of the use of line-focus principle the consequence is that the radiation intensity on the cathode side of the x-ray field is higher than that on the anode side
- "Fat Cat"

Heel Effect

 Because the e- on the anode side must travel further than the e- that are close to the cathode side of the target, the anode side x-rays have slightly lower energy than the cathode side x-rays

Anode Heel Affect

- "Fat Cat"
- The smaller the anode angle, the larger the heel affect

Anode Heel Affect

Copyright @ 2005 Mosby, Inc. All Rights Reserved.

Extrafocal Radiation

 X-ray tubes are designed so that the projectile e- interacts with the target. However, some of the e- bounce off the target and land on other areas

 This caused x-rays to be produced out side the focal spot

Extrafocal Radiation

These rays can also be called off-focus radiation

 Extrafocal radiation is undesirable because it extends the size of the focal spot, increases patient skin dose & reduces image contrast

Off-focus radiation

Fixed diaphragm in the tube housing

Using a grid
does not reduce
extrafocal
radiation

Copyright © 2005 Mosby, Inc. All Rights Reserved.

The Control Console

- The control console is device that allows the technologist to set technical factors (mAs & kVp) and to make an exposure.
- Only a legally licensed individual is authorized to energize the console.

Kilovoltage Peak

- kVp
- One kilovolt is = to 1000 volts

- The amount of voltage selected for the x-ray tube
- Range 45 to 120 kVp (diagnostic range)
- kVp controls contrast

Milliamperage

- mA
- One milliampere is equal to one thousandth of an ampere.
- The amount of current supplied to the x-ray tube

• Range 10 to 1200 mA

Time

• In seconds

• How long x-rays will be produced

0.001 to 6 seconds

mAs

mA X s = mAs

Where does the "POWER" come from?

- Circuitry to be covered in detail next year
- Basic Information:
- Transformers are used to boost up the power from the incoming line to the x-ray tube
- 220Volts incoming up to 120,000 volts (120kVp) to anode side of x-ray tube

Where does the "POWER" come from?

• Voltage current is reduced to milliamps to the filament (cathode) side of the tube.

 The difference in low (-) charge current on the filament side – and the high (+) voltage on the anode side is what helps to attract the electron to charge across the tube

DENSITY & CONTRAST

- KVP = CONTROLS CONTRAST
- (DIFFERENCES FROM BLACK TO WHITE
- MAS DENSITY
- AMOUNT OF BLACK ON THE FILM

"I can assure you our x-ray procedures follow very strict health and safety guidelines."

X-ray Production

- X-rays are produced when electrons give up kinetic energy.
- Changing direction because of the attraction of the nucleus requires the electron to give up some of it's kinetic energy.

- Bremsstrahlung

• The electron knocks an atom's bound electron out. A "hole" is created. When a new electron fills the "hole" it gives up energy.

- Characteristic

Bremmstrahlung Radiation

Characteristic Radiation

X-Ray Beam Descriptors

- Quantity (Intensity)
 - Number of x-ray photons produced
- Quality (Energy Distribution)
 - A measure of the penetrating power of the xray beam
 - Shape of the x-ray spectrum
 - Maximum photon energy

Primary Technique Factors

- mA tube current
- s duration of exposure
- mAs controls total number of x-rays producing image
- kVp maximum electron kinetic energy
- SSD source to skin distance
- SID source to image receptor distance

Heat Unit

- The Heat Unit was defined for Single Phase Equipment.
 - -HU = kVp * Time (sec) * Tube Current
 (mA)
 - -For Constant Potential Generators the average voltage is higher so to get "apples to apples" we apply a fudge factor of 1.4.
 - HU = kVp * 1.4 * sec * mA

Projection Radiography

Geometric Principles

Screen-Film Detector System

Typical Screen/Film Combination

X-ray Intensifying Screens

Screens convert x-rays to visible light, which darkens the film more than direct x-ray interaction in the emulsion.

The active mechanism in the screen is x-ray induced fluorescence.

Fluorescence is the prompt (10⁻⁸ s or quicker) emission of light from an excited atom, molecule, or crystal.

Phosphorescence is the delayed emission

(>10⁻⁸ s after excitation) of light.

Why We Use Screens

To increase the amount of film darkening obtained from a given exposure (increases detection efficiency)

RESULTS:

- 1) Reduces patient exposure
- 2) Smaller x-ray generators required
- 3) Shorter exposure for fixed mA
- 4) Changes image characteristics

As, decreases image spatial resolution

Film

- A film consists of film emulsion coated onto a type of plastic, mylar.
 - The grains of silver halide with a gelatin base comprise the film emulsion.
 - The composition, size and size distribution of the grains determine the film speed, film contrast.
 - Bigger size grains requires less exposure to get certain optical density. Uniform grain size makes higher film contrast.

Radiographic films

Type of Films

- Blue sensitive film (nonorthochromatic) sensitivity runs from UV to between 4000 and 5000 Å
- Orthochromatic film -sensitivity extended to green for use with green emitting rare earth screens

Panchromatic film -- sensitivity extended to red

Optical Density: A Measure of Film Response

What's What on the H and D

Latitude: The Range of OK Exposure

A good image means the region which is important to the diagnosis of the diseases should be in the range of OK exposure for the film.

Current Technology in Digital Imaging

Why do we go for "Digital"?

- Limitations of film-screen characteristics
- Limitation of physical storage space in hospital
- Need for electronic type imaging (PACS)
- Workflow convenience
- Image Quality
- Dose efficiency

Benefit of PACS: Real-time clinical consultation

Radiology

Clinician

PACS

Digital Radiography

From screen/film to DR

- Images from analog to digital...
 - Image viewing, transferring and archiving
 - Digital image processing
- Factors affecting techniques:
 - Dynamic range
 - Detector energy response
 - Detector efficiency

Interesting Points

- Screen-film characteristics are different from digital radiography
- Among types of digital radiography, they are different
- Technical settings by Technologist are different for conventional vs. digital imaging
- QC procedures/Film Reporting for each type of these modalities are different

DR: Acquisition Technology

- Photostimulable Phosphors ("CR" or "PSP")
 Photostimulable phosphor plates
- Flat-panel Detectors
 - Direct DR (DDR): Amorphous Selenium Detector – matrix of transistors, without photon conversion layer
 - Indirect DR (IDR): Amorphous Silicon TFT or CCD with CsI conversion layer

Wide Dynamic Range

High kV

Over-Exposed

1000 mR

L=2.2

S=50

Detector energy sensitivity

Wide dynamic range

- Under- and Over- exposure
 - Fewer photons More noise
 - Obscures low-contrast details
 - More photons = More signal strength (signal-to-noise ratio improves)
 - Beautiful images!
 - High patient dose!
- Wide dynamic range can lead to higher patient dose

Detector energy response and efficiency

- Optimal beam quality could be different
 kVp
 - Filtration
 - Also consider contrast and patient dose
- Optimal beam quantity (mAs) could be different
 - ■AEC calibration or manual techniques
 - ■Patient dose (kV dependant)

Workflow: Computed Radiography (CR)

Network

CR is based on the physical process of photostimulable luminescence (PSL)

- X-rays contribute energy to the electrons by the photoelectric effect
- Electrons can give up energy (violet light)...
 - by emitting light immediately (fluorescence)
 - by emitting light slowly (phosphorescence)
- Some electrons can retain (*store*) their energy
 - crystal defects can "trap" excited electrons
 - electrons can escape the traps when exposed to the proper wavelength (red) light (photo-stimulated luminescence)
 - electrons can also escape by thermal mechanisms

Materials that exhibit PSL are called photostimulable phosphors (PSP)

- PSPs currently in use for CR are crystals of alkaline earth and halides "doped" with Eu
 - BaFBr:Eu⁺² => *Fuji ST STIIIA, Kodak?*
 - $BaFBr_{0.85}I_{0.15}$: $Eu^{+2} => Fuji STV STVI$
 - $Ba_{0.86}Sr_{0.14}F_{1.10}Br_{0.84}I_{0.06}:Eu^{+2} => Agfa$
 - BaFBr_{0.8}I_{0.2}:Eu⁺² => *Konica* (*early*)
 - BaFI:Eu⁺² => Konica (current)
 - **RuBr:Tl =>** *Konica* (*ancient*)

Photostimulable Luminescence

Development and Digitization of the CR latent image

Plate Structure

<---> 50μm

Available computed radiography technology

CR Reader/Digitizer

Various capabilities, sizes, throughput

X-ray absorption by PSP is different from most intensification screens

Absorption Efficiency

Workflow: Flat Panel System

Flat Panel System

- Direct x-ray detection (DDR)
 - Photoconductor (a-Se) on top of TFT array
 - X-rays interact with photon sensors directly
 - After exposure, e's are generated and migrated through the Se layer (+) to the TFT layer for readout

Indirect x-ray detection (IDR)

- X-rays interact with an intensifying screen, and secondary photons interact with sensors (a-Si TFT or CCD)
- The screen causes more blurring
- CsI is more commonly used to improve spatial resolution.

GOS is also used as x-ray to light conversion Unlike CR, no mechanical readout process is involved (self-reading)

DR Detector Configurations

Indirect DR

Direct DR

Pixel Construction

TFT Readout

During exposure: (-) voltage applied to gate lines (charge accumulated)

During readout:

(+) voltage applied to gate lines (so transistor turned on), one gate line at a time.

Readout lines

Charged-Coupled Devices

Convert visible light to form images

- CCD chip = integrated circuit made of silicon, w/ discrete pixel electronics etched into surface
 - Ex. 2.5 x 2.5 cm CCD chip may have 1024 x 1024 or 2048 x 2048 pixels
 - Electrons are liberated after visible light exposure and kept in each pixel because there are electronic barriers (voltage) on each side during exposure.
 - After exposure, charges move down by togging voltages between rows and read out at the last row.

readout electronics

Flat Panel Detectors

MTF of DR

0.2

0.5

Frequency (1/mm)

2

2.5

3

3.5

1.5

1

DQE of DR

DQE

Spatial Frequency (mm⁻¹)

Fluoroscopy

Fluoroscopy

- Barium Studies
- Cardiac Catheterization
- Vascular Studies

Principles of Fluoroscopy

Major components include:

- X-ray tube: usually btw 50~110 kV
- Image intensifier (9~23 inches input size)
- Optical system
- TV or/and indirect camera
- TV monitor
- AEC (automatic exposure control) system

Fluoroscopy System

- X-ray tube positioned under table
- Collimation under table
- Grid at II entrance
 surface
- II positioned close to patient
- Output of II may be directed to several different recording devices

The Imaging Chain in Fluoroscopy

Fluoroscopy Suites

Angiography System

Il moves up and down, can be moved to image different body parts
Whole table can move up to 90° to put patient in erect position

- C-arm type system
- •Table moves up/down, swivels
- •X-ray tube & II in fixed orientation

X-ray Tube and Collimation

- Setting of tube voltage and current must take into account the required contrast and the lowest possible dose for patient and operator
- Different operational range of the tube voltage and current is applied for particular applications
- Object contrast is a function of tube voltage

Imaging Intensifier (I. I.)

Image Intensifier (II): Principles of Operation

 The X-ray side of the I.I. is coated with metal. X-ray photon is converted to light photons at the input fluorescent screen (Csl crystals) which is thicker than for radiographic screens. The light spectrum is wellmatched to the photocathode.

I.I. Principles of Operation

 The light photons are absorbed by the photocathode and converted to electrons. Photocathode is a metal compound which requires little energy to remove an electron form its surface (photoelectric effect, electrons have energy of approx.1-3 eV)

Structure of Cesium Iodide Needles

Photo of Csl Crystals

Scanning electron micrograph illustrates needlelike structure of CsI input phosphor

Image Intensifier Tube

Input & Output Windows

I.I. Principles of Operation

- The electrons accelerated by hivoltage (~25kV) (Produces x-rays so I.I. is shielded to prevent escape)
- A series of electrodes acts like a optical lens system to focus e- to an output phosphor (diameter of ~1 inch)
- The electrons hit the output fluorescent screen and generate light photons

Normal and Magnification Modes

II Output Window

Automatic Exposure Control

- AEC accommodates changes in patient attenuation and keeps brightness constant with AGC in the video system.
- Incident exposure rate is adjusted in accordance to the attenuation
- The AEC control may operate under different modes (such as isowatt, anti-watt, minimal radiation, high image contrast). These modes ramp the kV and mA according to a predetermined curve and attenuation of patient.

Fluoroscopic Imaging Chain

Optical Systems in Fluoroscopy

- The "lens" in the I.I. is made up of a series of positively charged electrodes which focus the electron beam as it flows from the photocathode toward the output phosphor. Electron focusing inverts and reverses the image.
- For undistorted focusing, all electrons must travel the same distance. That is why the input phosphor is curved to ensure the equal distance for e- from peripheral regions of II

Optical Systems

- Both the film camera and the TV camera focus on the I.I. output phosphor
- The I.I. light output is split into two paths by a semitransparent mirror; 90% for film, 10% for TV.
- Well adjusted film and TV camera usually do not cause the distortion, the I.I. does.
- Almost no loss of spatial resolution by the optical system itself.

Optics System

Indirect Camera

- Coupled directly to the I.I. output phosphor
- No loss of spatial resolution as the optics does not introduce losses and spatial resolution of the phosphor is the limiting factor
- Cine mode requires much higher patient exposure rate than fluoroscopic

Digital radiography principle Image intensifier ANALOGUE SIGNAL Memory

Flat panel technology: indirect conversion

Mammography

Screening Mammography

Goals of Screening Mammography

- To get the best quality of images with the lowest dose possible to the patient's breasts
- Image contrast and dose are the two factors that work against each other in screening mammography

How Does Mammography Technique Differ from Other Kinds of X-ray Imaging?

Mammography Requires Soft Tissue Contrast

Percent Contrast of Ductal Carcinoma

kVp

- Image quality of a mammogram and the glandular dose depends on x-ray spectrum.
- The shape of spectrum is determined by the anode material, filter and the kV.
- Contrast decreases as kVp increases
 (because σ~1/E³)
- Absorbed dose decreases as kVp increases
- Thick, dense breasts require higher energies

Mammo System Design

X-Ray Tube Design

Cathode & Filament

- Dual filaments
- 0.3 mm and 0.1 mm focal spot sizes
 - Minimizes geometric blurring
 - Maintains spatial resolution
- Space charge effect @ <35 kVp
 - Requires feedback circuit to measure nonlinear relationship between filament current and tube current
 - Modern mammo generators are multipulse type

Orientation of Cathode-Anode Axis

Left: Positioning of chest wall away from anode side of tube. Right: Change in beam intensity due to Heel effect.

X-ray Source

- Small focal spot size (less blur)
 - Large FS = 0.3 mm to 0.4 mm
 - Small FS = 0.1 mm to 0.15 mm
- Good Geometry
 - SID \geq 66 cm improves resolution
- Large output
 - >short exposure time
 - >Less motion blur
- Stable, consistent and linear

Filtration and Beam Quality

- Optimal mammography beam would be monochromatic with energy varied from 15 keV – 25 keV with breast thickness
- Specific x-ray tube target materials are used to try to come as close as possible to this goal

Imaging Systems Anode/Filter Materials

- Molybdenum (Mo/Mo, Mo/Rh) - $K_{\alpha} = 17.9$, $K_{\beta} = 19.5$ keV
- Rhodium (Rh/Rh) - K_{α} =20.2, K_{β} = 23.2 keV
- Tungsten (W/AI) - $K_{\alpha} = 59$, $K_{\beta} = 68$ keV

Anode Selection

- Mo/Mo tube for small or medium sized for dose optimization
- Change filter from Mo to Rh increase average energy
- W/Rh tube for thick/dense breast and more used in digital mammography
- <4 cm: 26kV Mo/Mo; 4~4.6cm: 27kV Mo/Mo; 5.5~7cm: 27kV Mo/Rh; >7cm: 26kV W/Rh

Bremsstrahlung & Characteristic

Characteristic energies of molybdenum (17.5 & 19.6 keV) are nearly optimal for detection of low contrast lesions in breasts from 3-6 cm thick.

Molybdenum Anode Spectrum

Relative number of x-ray photons

$$K_{\alpha} = 17.4 \text{ keV}$$

 $K_{\beta} = 20 \text{ keV}$
 $5 \quad 10 \quad 15 \text{ keV} \quad 20 \quad 25$

ĭke∨

30

Linear Attenuation Coefficients

Note low attenuation window that exists below the K-edge energy

Mo Target – Unfiltered Spectra

Contain relatively large fraction of very low and very high energy photons

Mo Target – 0.030 mm Mo Filter

30 μ m filter eliminates the majority of low- and high-energy x-rays

Mo Target – Mo & Rh Filters

Relative bremsstrahlung photon transmission windows below K-edges

Rh Target – Mo and Rh Filters

Mo filter with Rh target inappropriately attenuates Rh characteristic radiation

Mo & Rh Target – Rh Filter

Higher energy x-ray generated by Rh target are better for thick breasts

W – Unfiltered Spectrum

Characteristic x-rays between 8 and 10 keV

W Target – Rh Filter

Attenuates L-characterstic radiation to acceptable levels

Mammography X-ray spectra

- Digital mammography tends to use W/Rh combination as digital gives much better contrast than the fixed dynamic range of film
 - Hence, the poorer contrast due to the harder X-ray beam is less significant than the gain due to the use of digital (window and level, image processing, etc)
 - Allows lower doses to be used for the same image quality
 - In practice, contrast resolution in digital is much better than film

Breast Compression

- Scatter radiation degrades image contrast
- Primary radiation is the useful radiation which creates the image
- The thicker the breast, the more the scattering centers->more scatter

Breast Compression

Compressed 3cm, 150 cm²

Scatter/Primary=1.0

Scatter/Primary=0.40

Improves image contrast by 1.43

Auto Exposure Control(AEC)

- To have consistent film densities even with various breast thickness and densities
- More importantly, to have film properly exposed to achieve maximum contrast on the screen/film's HD curve

Automatic Exposure Control

Anti-Scatter Devices

Left: linear grid (5:1 ratio) Middle: Cellular grid rejects scatter in two dimensions Right: Magnification procedure

Reciprocating Grids

- Only 40~75% of the possible contrast is imaged unless scatter is controlled
- Typical grid ratio of 4~5:1 and 30 to 50 lines/cm
- Most mammo units have moving grid during exposure so that grid line is blurred
- Grids transmit 60~70% of the primary x-ray and absorb 75~85% of the scatter
- We pay "dose penalty" to achieve contrast improvement

Magnification Technique

- Geometric magnification uses a support platform giving 1.5 x to 2x magnification.
- Small focal spot used
- Best resolution on anode side

"Spot" Compression for Diagnostic Workup

- Spreads

 tissues over a
 localized area
- Used extensively with magnification radiography

Computed Tomography

Why CT?

- Fast
- Multi plane imaging
- Good spatial resolution
- Good temporal resolution
- Quantitative possible

COORDINATE SYSTEM

ISOCENTER

Inside CT scanner

IMAGING SYSTEM COMPONENTS

- X-RAY TUBE
- GENERATOR HIGH VOLTAG
- COLLIMATORS
- FILTER
- DETECTORS
- DETECTOR ELECTRONICS

X-RAY TUBE AND X-RAY PRODUCTION

CATHODE -----MADE OF TUNGSTEN

IN CT – STILL SMALL AND LARGE

THERMIONIC EMISSION

CATHODE HEATED UP TO AT LEAST 2,200 DEG. CELSIUS TO LIBERATE ELECTRONS FOR TRANSIT TO ANODE

FOCAL SPOT- CT UTILIZES DIFFERENT FOCAL SPOTS

THE FILAMENT SIZE – LENGTH – FOCAL
SPOT

SMALLER FOCAL SPOT - Low mA

SMALLER FOCAL SPOT – sharper image

ANODE ++++ MADE OF TUNGSTEN AND MOLYBDENUM

mA – tube current

• The number of electrons flowing from cathode to anode

kVp

• Potential difference between cathode and anode (Volts) kilo means 1,000 x.

S –time of exposure

mAs tube current for certain length of time

X-RAY PRODUCTION RESULTS IN A LOT OF HEAT AND VERY LITTLE X-RAYS BEING GENERATED

HEAT UNITS CALCULATION

HU = kVp X mA x time

MOST CT TUBES HEAT CAPACITY 3-5 MILLION HU

TUBE CURRENT CHANGE

2 * mA = 2 * number of photons 4 * mA = 4 * number of photons

Why changing mA or time

- Avoiding motion mA ¹ time
- Pediatric technique modification
- Reducing noise mAs

Tube voltage (kVp) CHANGE

15% INCREASE OF KVP = 2 * mAs

- 80-140
- TOO LOW NOISE (NOT ENOUGH PENETRATION OF THE PATIENT)
 PHOTON STARVATION - NOISE!!!!!

HIGH VOLTAGE GENERATOR – (HVG)

 GENERATES HIGH VOLTAGE POTENTIAL BETWEEN CATHODE AND ANODE OF AN X-RAY TUBE

CT GENERATOR

- 5-50 kHz
- 30-60 kW

KVP SELECTION:

80, 100, 120, 130,140

mA selection:

30, 50, 65, 100, 125, 150, 175, 200, 400

COLLIMATION IN CT

BASIC DATA AQUSITION SCHEME IN CT

FILTRATION CHANGE

FILTRATION MATERIAL

• ALUMINIUM (SPECIAL FILTER IN CT)

BOWTIE

TO MAKE THE BEAM *HARDER* AND MORE *MONOENERGETIC*

CT DETECTORS

DETECTOR TYPES: SCINTILLATION

SCINTILLATION CRYSTALS USED WITH PM TUBES:

- SODIUM IODIDE –AFTERGLOW + LOW DYNAMIC RANGE (USED IN THE PAST)
- CALCIUM FLUORIDE
- BISMUTH GERMANATE

S. CRYSTAL USED WITH PHOTODIODE

- CALCIUM TUNGSTATE
- RARE EARTH OXIDES CERAMIC

DETECTOR TYPE: GAS IONIZATION

EFFICIENCY OF DETECTORS- QDE

 SCINTILLATION – 95% - 100%-COMMONLY USED IN III & IV GENERATION SCANNERS

• GAS – 50% - 60%

COMPUTER SYSTEM

- RECONSTRUCTION AND POSTPROCESSING
- CONTROL OF ALL SCANNER COMPONENTS
- CONTROL OF DATA ACQUSITION, PROCESSING, DISPLAY.
- DATA FLOW DIRECTION

CT Data Acquisition and Image Reconstruction

CT Data Acquisition and Image Reconstruction

y beam ensity Detector num

A CT Projection

Simple Back-projection

Filtered Back-projection

Computation of The CT Number

$$\frac{CTNumber}{\mu_{water}} = \frac{K(\mu_{material} - \mu_{water})}{\mu_{water}}$$

- K is a constant the reference value for water
- One system is the Hounsfield system where K = 1000.
 - Another is the EMI where K=500

CT Number

Display Window/Level

From Conventional to MDCT

Prototype

First CT scanner

2008 Technology
First CT Scan (1972)

80 x 80 matrix size, 4 min/rotation, 8 grey level, overnight reconstruction

Generations	source	Source collimation	detector	Detector collimation	Source- Detector movement	Advantages	Disadvantages
1 st Gen.	single	Pencil beam	single	no	Trans.+ Rotates	No scatter	slow
2nd Gen.	single	Fan- beamlet	multiple	yes	Trans.+ Rotates	Faster than 1G	Low efficiency
3rd Gen.	single	Fan- beam	many	no	Rotates together	Faster than 2G	High cost and Low efficiency
4th Gen.	single	Fan- beam	Stationary ring	no	Source Rotates only	Higher efficiency than 3G	high scatter
5th Gen.	multiple	Fan- beam	Stationary ring	no	No movement	Ultrafast for cardiac	high cost
6th Gen.	single	Fan- beam	many	yes	3 rd Gen.+ bed trans.	faster 3D imaging	higher cost
7th Gen.	single	Narrow cone- beam	Multiple arrays	yes	3 rd Gen.+ bed trans.	faster 3D imaging	higher cost
8th Gen.	single	wide cone- beam	FPD	no	3 rd Gen.	Large 3D	Relatively slow

Multi-Detector Technology

Single slice vs MDCT

Adaptive Arrays

Fixed matrix

Multi-detector Allows More Coverage with Thinner Slices

Credit: Toshiba Medical

Multi-slice Detector Design

- There are essentially two Detector designs -Fixed Matrix and Adaptive Array
- Philips,GE & Toshiba use the Fixed Matrix, Siemens use the Adaptive Array
- These two designs differ strongly

In the Market Technology

Review article: Coronary CT angiography

Table 1. 64-slice CT scanner characteristics for four main manufacturers

	Single-source 64-slice CT				Dual-source 64-slice CT					
Manufacturer	Number of detector rows	Number of acquired slices	Maximum gantry rotation speed	Effective maximum temporal resolution	Number of detector rows	Number of acquired slices	Maximum gantry rotation speed	Effective maximum temporal resolution	Other special features	
GE Healthcare	64×0.625	64	350 ms	175 ms						
Philips Healthcare	64×0.625	64	400 ms	200 ms						
Siemens Healthcare	64×0.6	64	300 ms	150 ms	$2 \times 32 \times 0.6^{a}$	64	330 ms	165 ms	Dual energy function	
Toshiba Medical Systems	64×0.5	64	350 ms	175 ms						

^az-flying focal spot technique is used to acquire 64 slices. In addition, dual-energy CT is available with two tubes emitting X-ray spectra of different energy levels.

Sun et al, BJR, May 2012

Current Technology

Table 2. 128-, 256- and 320-slice CT scanner characteristics for four main manufacturers

	128-slice CT			256-slice CT			320-slice CT					
Manufacturer/scanner	Number of detector rows	Number of acquired slices	Maximum gantry rotation speed	Effective maximum temporal resolution	Number of detector rows	Number of acquired slices	Maximum gantry rotation speed	Effective maximum temporal resolution	Number of detector rows	Number of acquired slices	Maximum gantry rotation speed	Effective maximum temporal
GE Healthcare (Waukesha, WI)	$2 \times 64 \times 0.625^{a}$	128	350 ms	44 ms								
Philips Healthcare (Best, Netherlands)	128×0.625	128	270 ms	135 ms	2×128× 0.625 ^b	256	270 ms	135 ms				
Siemens Healthcare (Erlangen, Germany) Definition AS	64×0.6 ^c	128	300 ms	150 ms/75 ms								
Siemens	$2 \times 64 \times 0.6^d$	2 × 128	280 ms	75 ms/37.5 ms								
Definition Flash	$2 \times 64 \times 0.6^{e}$	2 × 128	280 ms	75 ms								
	$2 \times 64 \times 0.6^{f}$	2 × 128	280 ms	75 ms								
Toshiba Medical Systems (Tochigi, Japan)	128×0.5	128	500 ms	250 ms	256 × 0.5	256	500 ms	250 ms	320×0.5	320	350 ms	175 ms

Computation of The CT Number

- K is a constant the reference value for water
- One system is the Hounsfield system where K = 1000.
 - Another is the EMI where K=500

Conversion to HU Following Reconstruction

- Reconstruction yields an array of floating point numbers proportional to μt
- Calculation of HU with reference to water eliminates t
- Array of CT numbers as integer values are stored for use by image display hardware.

$$CT(x, y) = 1000 \frac{\mu(x, y) - \mu_{water}}{\mu_{water}}$$

CT Imaging Parameters

- Axial or Conventional CT
- Helical or Spiral CT
- Can vary
 - kVp
 - mA
 - time
 - algorithm

- slice thickness
 - Actual and recon.
- Field of View (Recon)
- X-ray Field Size
- Pitch

CT Image Display – Windowning and Leveling

- Each Voxel is represented on the screen as a Pixel (Picture Element)
- A voxel has a CT number that is 12 bits (4098 values), a display pixel has 8 bits (256 values)
- These values are mapped using a look up table (LUT).
- Changing the LUT is called Window width and level.

Data from Voxels are Displayed as an Array of "Pixels"

Houndsfield CT Number

- CT number depends on attenuation coefficient of tissue
- As Compton Scatter predominates the numbers depends primarily on e⁻ density
 - Correlates well with mass density

Typical Hounsfield Numbers

Material	HU Value	Density (g/cm3)
• Air	-1000	< 0.01
• Lung	-750	0.25
• Fat	-90	0.92
Water	0	1.00
White Matter	30	1.03
Gray Mater	40	1.04
Muscle	50	1.06
Bone	+1000	1.80

Window – Level and Width

 Allows user to determine which subset of the full dynamic range of CT values to display

Windowing and Leveling

Soft Tissue Window Width

Bone Settings for Window - Width

L = 50, W= 20 L = 50, W = 200 L=50, W = 1000

CT vs MRI

- Contrast mainly depends on HU (CT#)
- HU is energy dependent
- Fast scan with good resolution

- Slower scan time, fair resolution but superior contrast mechanism
 - T1, T2, PD, Flow,
 Chemical shift,
 Susceptibility, MT,
 etc

Dual Energy/Spectral CT Methods

- Dual sources (Siemens)
- Energy discriminating detectors (Philips)
- kVp switching (GE)

Dual Energy CT

www.aapm.org

(a) Schematic drawing of third-generation CT. CT images are acquired during the rotation of an X-ray tube and an array of detectors. (b) Schematic attenuation profiles of voxels. Measured X-ray intensity can be expressed as sum of the attenuation along the path of X-ray.

Advanced Detector Technology

Energy discriminating photon counting detectors

Spectral/multi energy CT has the potential to distinguish different materials by K-edge characteristics.

K-edge imaging involves the two energy bins on both sides of a K-edge

Excitation of a 1s electron occurs at the Kedge, while excitation of a 2s or 2p electron occurs at an L-edge

241

Understanding spectral detector technology and its impact on CT imaging

High- and low-energy data can be obtained simultaneously in time and space at the detector level

Philips

Spectral CT with Energy-Resolving Detector

Energy-resolving detectors discriminate colors

Spectral CT with energy-resolving detector is like the human eye at day

Spectral Results Categories by Units

Spectral results can be roughly divided into 2 groups: HU based and non-HU based

Spectral Result	Units	Clinical Objective	Examples
MonoE	HU	Improved iodine conspicuityReduce beam hardening artifactMetal artifact reduction	
MonoE Equivalent (120kVp Equivalent)	HU	Improve image quality	
Virtual Non Contrast	■ HU* (modified HU)	 Use when non-enhanced scans aren't performed Dose management Use existing 120 kVp protocols with dose modulation and iterative reconstruction (IMR) 	
lodine no Water	• mg/ml	Enhancement of iodinated contrast (Ca also bright)Quantification of Iodine	
Iodine Density	• mg/ml	 Enhancement of iodinated contrast (Ca removed) Visualization & Quantification of lodine 	
Effective Z	 Effective Atomic Number (EAN) 	 Ability to characterize stuctures based on material content (differentiation of hemorrhage vs Ca; differentiation of kidney stones) 	

Philips

Solving clinical questions:

Beam hardening reduction (Cardiac)

Conventional 120kVp

MonoE 110keV

Emerging Opportunities with Spectral CT

Multicolored or spectral CT has the potential to detect and quantify intraluminal fibrin presented by ruptured plaque in the context of CT angiograms all without calcium interference.

Philips Research, Hamburg, DE Relevant Patents: US20110096892; 20110096905 (Philips)

Diagnosis of Chest Pain of Cardiac Origin

Diagnostic Imaging – Treatment Planning – Intervention Guidance

Symptoms

Patient presented at ER with chest pain

Early Diagnosis

Stress Test/ Hospitalization

Diagnosis

Cardiac CT angiography (CCTA) Surplant invasive diagnostic cardiac catheterization with a quicker, noninvasive, lower cost procedure

catheterization with a quicker, noninvasive, lower cost procedure

Detecting Atherosclerotic Plaque

Dual Energy CT

The Selective Photon Shield ensures dose neutrality by eliminating spectral overlap. This makes Dual Energy as dose-efficient as any single 120 kV scan.

- During a Dual Source Dual Energy scan, two CT datasets are acquired simultaneously with different kV and mA levels, allowing to visualize differences in the energy-dependence of the attenuation coefficients of different materials.
- These images are combined and analyzed to visualize information about anatomical and pathological structures.

http://www.healthcare.**SiemenS**.com/computed-tomography/technologies-innovations/ct-dual-energy/technical-specifications

One Basic Reason for Use of Dual Energy CT: Material Differentiation

- By scanning a patient at two different energy spectra (e.g. at 56 kV and 76 kV), the attenuation difference of the same material is different.
- lodine has higher attenuation difference, compared to bone.
- Scanning allows the computer to process bone and iodine content on images differently.

Routine Use of Dual-energy CT for Material Differentiation

- Creation of 3D vascular images ("Direct Angio") by easy removal of bony structures
- Plaque analysis (calcified vs. soft plaques)
- Lung perfusion
- Virtual unenhanced scan (creation of unenhanced scan from enhanced images by deleting iodine content from the images)
- Calculi characterization (uric acid vs. others)

Dual Energy in Angiography

Use the spectral properties of iodine to differentiate it from other dense materials in the dataset (similar to magnetic resonance angiography (MRA)).

With Dual Energy CT, it is possible to identify bone by its spectral behavior and to erase it from an angiogram. Then, the iodine in the vessels remains the only dense material in the dataset and a MIP can be calculated from a CT angiogram to closely resemble an MRA.

Additionally, it is possible to detect those voxels that contain both calcium and iodine and add them back to the dataset.

Calcified plaques of atherosclerotic vessels can thereby be switched on and off in the dataset to visualize both the residual lumen and the plaque distribution.
Dual Energy CT: Dose Reduction

- Greatest potential is replacing true non-contrast phase of single energy multi-phase CT exam with virtual noncontrast images. Examples:
 - 4 phase liver becomes a 3 phase exam
 - 3 phase pancreas becomes a 2 phase exam
 - 2-3-4 phase CT IVP becomes 1-2-3 phase
- Potential dual energy dose reduction is 25 -50% compared

Clinical significance

	sonar use only. To orde	a princed copies, contact reprints grand.org		
Radiology	Dual-Energy Head CT Enables Accurate Distinction of Intraparenchymal Hemorrhage from Calcification in Emergency Department Patients ¹			
Ranilang Hu, MO Lakih Dafari Basheli, MD Joseph Young, MD Markus Wu, MD Stuart Promeraniz, MD Michael H, Lex, MD Rajiv Gupta, MD, PhD	Purpose: Materials and Methods: Results:	To evaluate the ability of dual-energy (DE) computed to- mography (CT) to differentiate calcification from acute hemorrhage in the emergency department setting. In this institutional review board-approved study, all un- enhanced DE head CT examinations that were performed in the emergency department in November and Decem- ber 2014 were retrospectively reviewed. Simulated 120- KVp single-energy CT images were derived from the DE CT acquisition via postprocessing. Patients with at least one focus of intraparenchymal hyperattemuation on single- energy CT images were included, and DE material de- composition postprocessing was performed. Each focal hyperattenuation was analyzed on the basis of the virtual noncalcium and calcium overlay images and classified as calcification or hemorrhage. Sensitivity, specificity, and accuracy were calculated for single-energy and DE CT by using a common reference standard established by rele- vant prior and follow-up imaging and clinical information. Sixty-two cases with 68 distinct intraparenchymal hyper- attenuating lesions in which the reference standards were available were included in the study, of which 41 (60%) were confirmed as calcification and 27 (40%) were con- firmed as hemorrhage. Sensitivity, specificity, and accu- racy of DE CT for the detection of hemorrhage were 96% (65% confidence interval [CI]: 81%, 100%), 100% (65% CE 91%, 100%), and 97% (65% CI: 24%, 89%), 95% (65% CI: 82%, 99%), and 87% (65% CI: 76%, 94%), respectively. Six of 68 (95%) lesions were classi- fied as indeterminate and three (44%) were misinterproted with single-energy CT wore Ark (65% OI: 65%), energed con- sified as indeterminate and three (44%) were misinterproted with single-energy CT were and three travely basilied		
¹ From the Department of Radiology, Manachusetts General Hospital, Harvard Medical School, 55 Fruit St, GRB 272A, Botton, MA 02114. Resciented April 12, 2015, revision requested June S, Final revision rescorded October 20. Address correspondence to R.G. (= mait: quyint N0 partners.org vv). R.H. and L.D.B. contributed equality to this work. * RSNA, 2016	Conclusion:	DE CT by using material decomposition enables accurate differentiation between calcification and hemorrhage in patients presenting for emergency head imaging and can be especially useful in problem-solving complex cases that are difficult to determine based on conventional CT ap- pearance alone. ^e RSNA, 2016 Online supplemental material is available for this article.		

Radiology: Volume 280: Number 1—July 2016 • radiology: ana.org

CT dose and how to reduce risks

- CT provides significant clinical information but impose higher radiation dose
- To reduce dose, numbers of approach can be done

Radiation Dose to Patients From Common Imaging Examinations

Procedure			Approximate effective radiation dose	Comparable to natural background radiation for	 Estimated lifetime risk of fatal cancer from examination 	
		Computed Tomography (CT) — Abdomen and Pelvis	10 mSv	3 years	Low	
ABDOMI REGIO		Computed Tomography (CT) — Abdomen and Pelvis, repeated with and without contrast material	20 mSv	7 years	Moderate	
	ABDOMINAL	Computed Tomography (CT) — Colonography	10 mSv	3 years	Low	
	REGION	Intravenous Pyelogram (IVP)	3 mSv	1 year	Low	
		Radiography (X-ray) — Lower GI Tract	8 mSv	3 years	Low	
		Radiography (X-ray) — Upper GI Tract	6 mSv	2 years	Low	
		Radiography (X-ray) — Spine	1.5 mSv	6 months	Very Low	
	Radiography (X-ray) — Extremity	0.001 mSv	3 hours	Negligible		
CENTRAL NERVOUS SYSTEM		Computed Tomography (CT) — Head	2 mSv	8 months	Very Low	
	CENTRAL NERVOUS SYSTEM	Computed Tomography (CT) — Head, repeated with and without contrast material	4 mSv	16 months	Low	
		Computed Tomography (CT) — Spine	6 mSv	2 years	Low	
Снеят		Computed Tomography (CT) — Chest	7 mSv	2 years	Low	
	CHEST	Computed Tomography (CT) — Lung Cancer Screening	1.5 mSv	6 months	Very Low	
		Radiography — Chest	0.1 mSv	10 days	Minimal	
2	DENTAL	Intraoral X-ray	0.005 mSv	1 day	Negligible	
5	HEART	Coronary Computed Tomography Angiography (CTA)	12 mSv	4 years	Low	
\bigcirc		Cardiac CT for Calcium Scoring	3 mSv	1 year	Low	
İ	MEN'S IMAGING	Bone Densitometry (DEXA)	0.001 mSv	3 hours	Negligible	
\bigotimes	NUCLEAR	Positron Emission Tomography — Computed Tomography (PET/CT)	25 mSv	8 years	Moderate	
A	WOMEN'S	Bone Densitometry (DEXA)	0.001 mSv	3 hours	Negligible	
1	IMAGING	Mammography	0.4 mSv	7 weeks	Very Low	

Negligible	Minimal	Very Low	Low	Moderate
Less than 1 in 1,000,000	1 in 1,000,000 to 1 in 100,000	1 in 100,000 to 1 in 10,000	1 in 10,000 to 1 in 1,000	1 in 1,000 to 1 in 500
	Negligible Less than 1 in 1,000,000	Negligible Minimal Less than 1 in 1,000,000 1 in 1,000,000 to 1 in 100,000	Negligible Minimal Very Low Less than 1 in 1,000,000 1 in 1,000,000 to 1 in 100,000 1 in 100,000 to 1 in 10,000	Negligible Minimal Very Low Low Less than 1 in 1,000,000 1 in 1,000,000 to 1 in 100,000 1 in 100,000 to 1 in 1,000 1 in 10,000 to 1 in 1,000

Important: Pediatric patients vary in size. Doses given to pediatric patients will vary significantly from those given to adults.

RadiologyInfo.org

For the most current information, visit radiologyinfo.org.

** The effective doses are typical values for an average-sized adult. The actual dose can vary substantially, depending on a person's size as well as on differences in imaging practices.' 'Mettler, F.A., et al. "Effective doses in radiology and diagnostic nuclear medicine: a catalog." Radiology, July 2008: 248(1):254–263. or 15

Different approaches

Detector technology

- Gemstone, NanoPearl, Stellar, etc

- Post-patient collimation
- Iterative reconstruction
- Automatic kV selection
- Organ sensitive dose reduction
- Automatic Tube Current Modulation

Approach to reduce dose through iterative based reconstruction

Vendors approach

	GE	Siemens	Philips	Toshiba
Name	Veo - ASIR	Iris/ Safire	IMR/ iDose	AIDR

Iterative Reconstruction

SIEMENS – ADMIRE

Five image noise and sharpness levels

ASIR-V

Dental X-rays

Topics

Dental X-ray equipment
 Radiation protection in dental radiology
 Quality control for dental

equipment

Overview

 To be able to apply the principle of radiation protection to dental radiology system including design and Quality Control.

Part 22: Optimization of protection in dental radiology

Topic 1: Dental x-ray equipment

Types of units

- "Intra-Oral" units
 - Standard dental tube
 - Uses an intra-oral image receptor and extraoral x-ray tube
- Panoramic (Orthopantomography, OPG)
- Cephalometric (Ceph)

Intra-Oral Dental X-Ray Equipment

Modern Dental X-Ray Unit

Panoramic X-Ray Equipment

Cephalometric X-Ray Equipment

X-Ray Tube

- stationary Anode
- avoid overheating
- tube duty cycle:
 - typical: 1:30 intaroral
 - 1:10 OPG
 - 420 mAs/hr intraoral

Tube Head

Generator Circuit

Generators & Pre-Heat

- Medium frequency stable waveform
- Single phase (SP) pulsed
- Pre-Heat: separate circuit for heating filament
- Single Phase units without a pre-heat circuit
 - initial pulses of variable kV

Collimator

1. Lead Collimator with central hole

2. Spacer Tube (cone, position indicating device or PID)

Cones

Cone (PID) Length and Collimation

- Three cone (source-to-skin) distances— 8", 12", and 16"
 - Longer distance improves image sharpness, reduces dose
- Circular vs rectangular collimation
 - Rectangular- smaller field irradiated
 - Results in lower dose
 - Less scattered radiation
 - Increased contrast
 - But more difficult to position

Cephalometric Holder

Intra-Oral Dental X-Ray Equipment (technical data)

- Exposure time
- Tube
- Focal spot size
- Inherent filtration
- Focus-skin distance
- Irradiated field

from 30 ms to 2.5 s

Min. 50 kV, ~7mA, Typically 70 kV

0.4 to 0.7 mm

- ~2 mm Al equivalent
- 20, 30, or 40 cm

28 cm² with round section, 6 cm diameter collimator

available

Panoramic X-Ray Equipment (technical data)

- Focal spot
- kV
- mA
- Exposure time

0.5 mm

- 60 80 kV in 2 kV steps
- 4 10 mA steps 4, 5, 6, 8, 10
- 12 S (standard projections)0.16 3.2 S(cephalometric projections)
- Flat panoramic cassette
- te 15x30 cm (Lanex Regular screens))

Image Receptors in Dental Radiology

- Small films (2 x 3 or 3 x 4 cm) in light-tight envelopes (no screen)
- Digital intraoral sensors compared with category F film, the radiation dose is reduced by 60%.
 - Panoramic Radiology and Cephalometry
- Screen-film combination
- Digital sensors compared with screenfilm sensitivity class 200, the radiation dose is reduced by 50-70%.

Dental Radiology Film Types

Sensitivity class D

- Good spatial resolution
- Typical delivered dose: about 0.5 mGy
- Typical exposure times: 0.3 0.7 s

Sensitivity class E, E-F, or F

- Good spatial resolution
- Typical delivered dose: about 0.25 mGy
- Typical exposure times: 0.1 0.3 s

Image quality of D, E, E-F, F films similar

Thank you

