

เรื่งงราวเกี่ยวกับอะตอมและนิวเคลียร์ ถูกบดบังด้วยความรู้สึึหวั่นกรงและหวาดกลัว อันตรายจากความทรงจำถึงอานุภาพร้ายแรง ของระเบิดนิวเดลียร์ที่ใช้ในการสงครามในอดีต และจากคำว่า "รังสี" ชึ่งมนุษย์ทั่วไปไไม่สามารถ รับรู้หรือสัมผัสได้

แท้จริงแล้วอะตอม/นิวเคลียร์ นั้นคือ ส่วนประกอบของมนุษย์ สิ่งแวดล้อมและเป็น ส่วนหนึ่งของชีวิตประจำวันของสรรพสิ่งต่างๆ ในโลก

เพราะสสารทุกอย่างในจักรวาลย่อม ประกอบด้วยอะตอมชึ่งมีแก่นหรือแกนกลาง เป็นนิวเคลียส โดยมวลของนิวเคลียสนั้นยึยโยง กันอยู่ด้วยพลังงาน

หนังสือชุดอะตอมวาไรด้้ จัดทำขึ้นเพื่อ นำเสนอบทความสั้นๆ ที่มีสาระน่ารู้เกี่ยวกับ อะตอม นิวเคลียร์และรังสี โดยนักวิชิขการ นิวเคลียร์ของสำนักงานปรมาณูเพื่อสันติ และ ผู้ทรงคุณวุฝิจากหน่วยานาภายนอกต่อสาธารณชน ผู้สนใจใสรรู้ด้านนิวเคลียร์ และผู้จัดทำหวังเป็น อย่างยิ่งว่าเอกสารชุดนี้จะมีส่วนสร้างภาพ นิวเคลียร์ในชีวิตประจำวันในแงมุมใหมได้

สารขญ

1 รับรังสีวันละนิด....ชีวิตยืนยาว 1
II 100 ปี กัมมันตภาพรังสี 5
III โรคกลัวรังสี... 8
แย่ยิ่งกว่าการได้รับรังสี
IV รังสีอันเกิดจากการเผาถ่าน 10
V นักบินอวกาศ...ฟังทางนี้ 13
VI จรวดนิวเคลียร์ 16
VII ความลับจากสุริยเทพ 20
VIII อินเดียกับทรายชายหาด 22
IX เชื้อเพลิงนิวเคลียร์จากน้ำทะเล 25
X ดอกไม้ทะเลคุณปู่ 27
XI ความปลอดภัยทางนิวเคลียร์ 31

รับรังสัวังละนิต...ชิวตยียยาว

เป็นที่รู้ในหมู่พ่อครัว แม่ครัว (ที่มี ฝีมือ) ว่าถ้าจะทำของหวานให้หวานแหลม เขา จะต้องเหยาะเเลือลงไปนิดหน่อยและถ้าจะทำ ของคาวให้อร่อยก็ต้องโรยน้ำตาลนิดๆ ในวงการ เครื่องหอมก็เช่นกัน น้ำหอมกลิ่นหอมจัดไม่ว่า จะเป็นของ นินา รีชชี หรือมาดามโรชา หรือ ชาแนลทั้งหลาย ผู้ผลิตจะต้องเจือกลิ่นเหม็น ของชะมดหรือสกั้งค์ไว้ดัวยเสมอ หลักการ เจือบนด้วยสารตรงกันข้ามนี้เป็นที่รู้จักีรววมทั้ง ในวงการแพทย์ที่มีการฉีดวัคซีนชนิดต่างๆ ป้องกันโรคโดยการใช้สารพิษจากเชื้อโคคนั้น เป็นวัคชีน

โดยเหุุที่กัมมันตภาพรังสีเป็นที่กล่าวขวัญ ว่าเป็นต้วอันตราย หากได้รับรังสีปริมาณมากๆ อาจมีผลกระทบอย่างใหญุ่หลวง เช่น ทำให้เกิด อาการโรคมะเร็ง โรคทางเดินอาหาร และ ทำให้อายุสั้นลง เป็นตัน นักวิทยาศาสตร์หลายนาย จึงมีความคิดแย้งในมุมกลับว่า โดยหลักการ การกระดุนด้วยยาราเจือปนอาจะะท่อผลตรงกันข้าม ได้นั่นคือ หากมนุษย์ได้รับััมมันตภาพรังสี เพียงนิดหน่อย อาจจะเป็นการยืดอายุของคน

ผู้นั้นได้ นักวิทยาศาสตร็จึงได้เริ่มทำการศึกษา วิจัยในเรื่องนี้อย่างเอาจริงเอาจัง

เป็นที่ทราบกันดีประการหนึ่งว่า ตลอดเวลาที่มีชีวิตอยู่นี้มนุษย์ทุกคนได้รับ กัมมันตภาพรังสีอยู่เล้วโดยมีต้นกำเนิด 2 ทาง คือรังสีนอกร่างกายอันได้แก่ รังสีคอสมิกจาก นอกโลก และรังสีจากแร่ธําตุกัมมันตรังสีตาม ธรรมชาติ และรังสีภายในร่างกายอันเกิจจากการ บริโภค หรือหายใจเอาสารกัมมันตรังสีที่มี ปะปนในอาหาร น้ำ และในบรรยากาศทั่วไปไข้าสู่ ร่างกายนั้นหมายความว่าหากกัมมันตภาพรังสี ปริมาณน้อยๆ มีอันตรายต่อมนุษย์ตลอดเวลา แล้วมนุษยชาติทุกูปนาม ก็กำลังได้บับภัยพิบิติ คล้ายคลึงกันอย่างหลีกเลี่ยงมิได้

ด้วยความเชื่อที่ว่า กัมมันตภาพรังสี ปริมาณน้อยาวนำผลมี่ดี่อ่อมนุษย์ได้ นักวิทยาศาสตร์ ได้ริเริ่มทำการศึกษาวิอัยในเรื่งนนี้ โดยเบื้องต้น ได้ทำการึึกษาผลกระทบของรังสียีมม่อ่อพารามีเซียม ชึ่งเป็นสัตวเซลลเ.ดียว การทดลองโดงจับพารมีเซียม ไปเลี้ยงในที่ปลอดรังลี เปรียบเทียบกับเลี้ยงใน ที่มีระดับรังสีต่างๆ ผลการทดลองปรากฏว่า พารามีเซียมในที่ที่ปลอดรังสี (หมายถึงในที่ที่มี เครื่องกำบังรังีีครอบคลุมบริเวณ) มีอาการเฉา ไม่เวิญเดิบโตเหมือนพารามีเซียมในภาวะปกติ และเมื่อนำสารกัมมันตรังสีใส่เข้าไปในที่กำบัง

รังสีนั้น ผลปรากฏว่าพารามีเซียมกลับเริ่มแบ่งตัว และเพิ่มปริมาณเช่นเดียวกับพารามีเซียมใน ภาวะปกติ คณะผู้ทดลองยังพบอีกว่าพารามีเซียม ที่เลี้ยงในที่ที่มีระดับรังสีต่างกัน คือในที่ที่มีระดับ รังสีปกติ ในที่ที่มีรังสีสูงกว่าปกติ 2 และ 5 เท่า และในที่ที่มีรังสีระดับต่ำกว่าปกตินั้น พารามีเซียม ในที่ที่มีระดับรังสีสูงกว่าปกติ 5 เท่า มีความ เจริญเติบโตดีที่สุด เหตุผลอีกประการหนึ่งที่ทำให้เชื่อว่า รังสีระดับรังสีต่ำไม่เลวร้ายไปเสียทีเดียวนั่นคือ ในพื้นที่โลกบริเวณต่างๆ นั้น ค่าระดับของรังสี ตามธรรมชาติ (background radiation) จะ แตกต่างกันไปขึ้นกับระดับความสูง และการ เจือปนของสารกัมมันตรังสีในเนื้อดิน/หิน ใน บางสถานที่ที่มีประชาชนอาศัยอยู่มานาน หลายชั่วคนแล้วทั้งๆ ที่ได้พบว่าระดับรังสีใน บริเวณนั้นมีค่าสูงกว่าเกณฑ์เฉลี่ยถึง 20 เท่า เช่นในประเทศบราชิล ประเทศอินเดีย และ ประเทศจีน เป็นต้น อย่างไรก็ตามสุขภาพของ ประชาชนในบริเวณเหล่านั้นก็ยังคงเหมือน ประชาชนทั่วไปและที่น่าพิศวง คือ ชาวจีนที่ อาศัยบนเทือกเขาสูงในบางบริเวณที่มีโอกาส รับรังสีคอสมิกมากกว่าชาวพื้นราบกลับเป็นผู้ที่ มีอายุเฉลี่ยมากกว่า 90 ปี และไม่ปรากฏ โรคภัยไข้เจ็บไปรบกวนแต่ประการใด

ดังนั้น การที่จะกล่าวว่า รังสีจะก่อให้ เกิดอันตรายต่อชีวิตมนุษย์เสมอไปนั้นอาจเป็น เรื่องผิดพลาดก็ได้ เพราะจากการทดลองและ การสำรวจดังได้กล่าวแล้วแสดงว่า รังสีระดับต่ำ อาจทำให้ชีวิตยืนยาวได้ ช่วยในการเจริญเติบโต และปราศจากโรคาพยาจิซึ่งน่าจะมีการศึกษา วิจัยในเรื่องนี้ต่อๆ ไป

100 กี กัมมัมตภาพรังสี

Radioactivity มีอายุเข้ามาถึง
100 ปีแล้ว โดยเริ่มต้นจากการค้นพบด้วย ความบังเอิญ ของ Henri Becquerel ซึ่ง ประทับใจมากต่อการค้นพบรังสีเอกซ์ของ Wilhelm Conrad Roentgen เมื่อปลายปี พ.ศ. 2438

เบคเคอเรลตั้งสมมติฐานว่า การเรืองแสง (ของสารเรืองแสงนอกหลอดคาโทดเร์ที่เรินท์เกน สังเกตเห็น) นั้น น่าจะเกี่ยวเนื่องกับคุณสมบัติ ของสารเรืองแสงเองด้วย ดังนั้นเขาจึงทำการศึกษา ถึงรังสีของผลึกสารเรืองแสง โดยจำเพาะที่เขา เริ่มต้นด้วยการตรวจสอบสารประกอบเกลือชัลเฟต ของยูเรเนียม-โปตัสเซียม เพราะได้สังเกตว่า เมื่อฉายแสง $U V$ ผ่านสารชนิดนี้แล้ว จะเห็น การเรืองแสงสุกใสมากกว่าวัสดุชนิดอื่นๆ เบคเคอเรลได้พบด้วยความตื่นใจว่า สารเรืองแสงชุดนี้ซึ่งถูกนำไปวางใกล้ฟิล์มถ่ายรูป ที่เก็บไว้มิดชิดกลับก่อผลให้มีสภาพเป็นฟิล์ม ที่ถูกแสงได้ แม้ต่อมาเขาจะได้ทดลองใช้วัสดุอื่นๆ มาวางกั้นระหว่างฟิล์มกับสารเรืองแสงนั้นแล้ว ก็ตาม

5

ดังนั้นเขาจึงได้สรุปเป็นข้อสังเกตเมื่อ วันที่ 24 กุมภาพันธ์ พ.ศ. 2439 ณ สถาบัน วิทยาศาสตร์แเ่งฝัั่งเศสว่า เขาได้ค้นพบว่ามี รังสีที่สามารถทะลุทะลวงผ่านวัสดุทึบแสงได้ จากปรากฏการณ์การเรืองแสงของสารเรืองแสง (หมายเหตุ: การเรืองแสง (Fluorescence) จะเกิดขึ้นได้เมื่อ สารเรืองแสไดด้รับพลังงาน ภายนอกเข้าไป)

อย่าไร็ร็ตามอีกไไม่กั่วนต่อมาเบคเคอเรล ก็พบว่าแม้แต่สารเรืองแสงชุดนั้นอยู่ในที่มืด ตลอดเวลาก็มีสารรังสีทำให้จิล์มที่เก็ไไ้ "ดำ" เช่นเดียวกัน และเมื่อเขาใช้สารเรืองแสงอี่นๆ มาทดลองแบบเดียวกันกลับไม่พบปรากฏการณ์ "พิล์มดำ" อีกเลย

เขาจึงสรุปว่า มีเพียงสารเรืองแสงที่ เจือบนด้วยยูยรเนียมเท่านั้นที่สามารถก่อให้เกิด ปรากฏการณ์ธรรมชาตินิ้ได้

การค้นพบนี้เกิดขึ้นหลังจากการค้นพบ
x-ray ของเรินท์เกน 100 วัน พอดี และคำว่า Radioactivity นั้นเป็นชื่อที่เสนอแนะโดย Marie Curie เพื่ออธิบายปรากฏาราร์ดังกล่าว (ในปี พ.ศ. 2441)

อาจะกลล่าไไดว่วการค้นพม Radioactivity
โดย เรินท์เกน เป็นกรณีที่สงผลต่อวงกการแพทย์ และวิทยาศาสตร์ได้มากกว่าและรังสี่ากกยูยรเนียม

ก็ "อ่อน" จนไม่สามารถนำไปใช้ประโยชน์ได้ เมื่อเทียบกับรังสีเอกช์

เบคเคอเรลเองก็เลย้้อใจและไม่อาใจใส่ ในการค้นพบของตัวเอง และไม่ได้เสนอผลงาน ใหม่ๆ ในรื่งนนี้อี้ก (บทความเกี่ยวกับ Radioactivity ของเบคเคอเรลมีเพียง 9 ฉบับเท่านั้น) กัมมันตภาพรังสีกลับฟี้นชีวิตใหม่ ก็ ด้วยความพยายามสร้างผลงานของ Marie Curie จากการสังเกตว่า สินแร่ยูเรเนียมเอง มีรังสีสูงกว่าสารประกอบยูเรเนียมบริสุทธิ์ ดังนั้นจึงตั้งสมมติฐิจนว่าในสินแร่นั้นคงมีธาตุ อื่นๆ ที่ให้วังสีออกมาได้อยู่อี่ก คูรึจึงได้ทดลอง แยกแร่ดังกล่าวจนกระทั่งได้พบว่า มีธาุุรังสี อีกอย่างน้อย 2 ธาตุ นันคือ เรเดียม และ โพโลเนียม ในปี พ.ศ. 2441

โรคกลัวรังสั

แย่ชิ่งกว่าการไดัรับรัรสี

ศาสตรจาวย์์ โชไฮ คอนโด อาจรย์ พิเศษแห่งมหาวิทยาลัยโอชากา หนึ่งในคณะผู้เคราะห์ร้ายจากเหตุการณ์ฮิโรชิมา ได้เขียนสรุบในหนังสือลล่มนนึ่งว่า การกลัวัังสี เป็นสาเหดุที่จะทำอันตรายต่อสุขภาพยิ่งกว่า ตัววังสีเอง

ในหนังสือดังกล่าว ศาสตราจารย์คนโด ได้ระบุว่ารังสีปริมาณต่ำๆ จะไม่มีอันตรายใดๆ ต่อมนุษย์ ในทางตรงกันข้าม บางครั้งอาจเป็น ผลดีดีวยช้ำ เขาได้ให้คำจำกัดความของ "รังสี ปริมาณต่ำ" ต้วยว่า หมายถึง "รังสีีี่มีปริมาณ สูงกว่ารังสสึ่พึ่งมุุษย์ได้บับอยู่ทุกวันตามธรรมชาติ ขั้นไปถึง 100 เท่า"

ศาสตราจารย์คนโด เป็นนักวิทยาศาสตร์ ผู้นนึ่งที่ได้ร่วมศึกษาเกี่ยวกับประชากรชึ่งได้รับ รังสูที่เมืองธิโรชิมา และนางาชากิ ตั้งแต่ปี พ.ศ. 2488 และเป็นที่ปรึกษาสถาบันวิ้ับพลังงาน ปรมาญูของมหาวิทยาลัยคินกิด้วย เขากล่าวว่า จากการที่บ่อน้ำแร่ต่างๆ มีผลดีต่อุุขภาพของ มนุษย์นั้น บ่อน้ำแร่ดังกล่าว จริงๆ แล้วมี

กัมมันตภาพรังสีสูงกว่าในธรรมชาติทั้งนั้น นอกจากนี้ จากการศึกษาผู้ที่ปฏิบิติงานด้าน รังสีพบว่าปริมาณรังสีที่คนเหล่านั้นได้รับเพิ่ม จากในธรรมชาติปกติ ยังไม่เป็นอันตรายต่อ ผู้ได้วับ แต่าลังสามารถต่อต้านโรคมะเร็บบงชนิด ได้ เมื่อเป็นเช่นนี้ เขาจึงได้ตั้งคำถามต่อไปว่า อะไรคือสาเหตุีี่เท้จริงของปัญหาด้านสุขภาพ ของผู้ได้รับรังสีปริมาณต่ำ เขาได้พบว่าจาก การรายงานขององค์การอนามัยโลกชึ่งได้ ทำการศึกษาประชาชนนับล้านคน หลังจาก การเกิดอุบิดิกั่ยเเชอร์โนบิล ระบุว่าปัญหาด้าน สุขภาพที่สำคัญมิใช่เกิจจากการได้บับรังสี แต่ เกิดจากปัญหาด้านจิตใจและความเครียดต่างๆ เช่น เกิดความหวาดกลัวังงึึกกลัวการถูกจำกัด สถานที่ หรือกลัวอาหาร เป็นต้น ศาสตราจารย์ คอนโด จึงสรุปว่า ความกลัวังสีสึึึ่งแพร่จาก สื่อต่างๆ นั้นจะทำอันตรายต่สุขภาพมนุษย์ มากยิ่งกว่าการได้รับัังสีเอง ยกเว้นแผ่ผู้คน จำนวนน้อยซึ่งได้รับับรัสีปริมาณมากจริงๆเท่านั้น ศาสตราจารย์คอนโด กล่าว่า เปารู้สึก เสียใจกับปัญหาสุขภาพซึ่งเกิดจากความกลัว โดย่ไม่มีสาเหตุและที่พูดมิได้หมายความว่ารังสี จะไม่สามารถทำอันตรายต่อสุขภาพได้เพียงแต่ จะต้องิิจรรณาโดยตัดความกลัวชั่งไม่ทราบสเหตุ และความหลงใหลต่างๆ ออกไปเสียก่อนเท่านั้น

รัสีีอัแเกิจจากการเผาถ่าห

 รังสีออกสู่สิ่งแวดล้อมนั้น ส่วนใหญ่แแ้วจะมา จากการเกิดอุบัดิเหตุในโรงไฟฟ้านิวเฉลียร์ หรือไม่ก็เกิดจากโรงงานผลิตอาวุธนิวเคีียร์ แต่มิใดรบ้างจะคิดว่าจากการเผาถ่านนั้น ก็มี การปล่อยรังสีสูิสิ่งววดล้อมเช่นเดียวกัน

ข่าวนี้เกิดจากการตั้งข้อสังเกตของ
W. Alex Gabbard ซึ่งเป็นนักนิวเคลียร์ฟิลิกส์ จาก Oak Ridge National Laboratory ในรัฐ Tennessee โดยคำนวณจจากตัวเลข US. EPA เกี่ยวกับค่าฉฉลี่ยของปริมาณของยูเรเนียมใน ถ่านประมาณ 1.3 ส่วนในล้านส่วน และ ปริมาณทอเรียม 3.2 ส่วนในล้านส่วนชึ่งโดย ธรรมชาดิแล้วจะมียููเรเนียม-235 ผสมอยู่โดย เฉลี่ยร้อยละ 0.71 ซึ่ง ยูเรเนียม-235 นี้เป็น วัสดุต้นกำลังที่ใช้เป็นเชื้อเพลิงในโรงไฟฟ้า นิวเคลียร์

ในปี ค.ศ. 1982 Gabbard ได้ปรมาณการ จาาตัวเลขของปริมาณของถ่าน ที่ใช้เเ็นเชื้อเพลิง ในโรงไฟฟ้าต่าง ๆ ในประเทศสหรัฐัจอเมริกา ประมาณ 616 ล้านต้น ซึ่งจำนวนถ่านที่ถูกเผานี้

จะมีการปลดปล่อยยูเรเนียมออกมาประมาณ 801 ตัน และทอเรียมประมาณ 1,971 ตัน สู่ สภาพแวดล้อม จากตัวเลขดังกล่าวประมาณ อย่างคร่าว ๆ แล้ว จะเป็นยูเรเนียม- 235 ประมาณ 11,371 ปอนด์

นอกจากนี้ หากคำนวณถึงการใช้ถ่าน เป็นเชื้อเพลิงทั่วโลกจำนวน 2,800 ล้านตัน แล้ว จะเห็นว่ามันปล่อยยูเรเนียมถึง 3,640 ตัน และทอเรียมอีก 8,960 ตัน ซึ่งในจำนวนนี้ เป็น ยูเรเนียม -235 ถึง 51,700 ปอนด์

จากตัวเลจในปี ค.ศ. 1982 สหรัฐอเมริกา มีโรงไฟฟ้านิวเคลียร์อยู่ 111 โรง ใช้เชื้อเพลิง นิวเคลียร์ประมาณ 540 ตัน ในการผลิตไฟฟ้า ซึ่ง Gabbard ได้เขียนไว้ใน Oak Ridge National Laboratory Review ว่าการปลดปล่อยสารรังสี จากการเผาไหม้เชื้อเพลิงถ่านนั้นมากกว่าเป็น เชื้อเพลิงนิวเคลียร์ในการผลิตไฟฟ้าของสหรัฐฯ เสียอีก นอกจากนี้ Gabbard ได้คำนวณความ สูญเสียในค่าพลังงานพบว่าเชื้อเพลิงนิวเคลียร์ ที่ถูกปลดปล่อยออกมาจากการเผาถ่านให้พลังงาน จากการเผาถ่านนั้นถึง $11 / 2$ เท่า

Gabbard กล่าวว่า ผู้ผลิตไฟฟ้า ไม่ได้คำนึงถึงเลยว่าสิ่งที่เกิดจากการเผาถ่าน จะมีอันตรายเท่า ๆ กับกากเชื้อเพลิงนิวเคลียร์ เนื่องจากมีจำนวนยูเรเนียม และทอเรียม รวมทั้ง

สารัังสี่ื่นๆ ที่ปนอยู่ในขี้เถ้าจากการเผาถ่าน และขี้เถ้าเหล่านั้นไม่ได้รับการกำจัดเช่นเดียว กับกากกัมมันตรังสี ขี้เถ้าถ่านเหล่านี้ จะต้อง ถือว่าเป็น low-level radiation waste แต่ เนื่องจากกฎเกณฑ์ขัอบังคับที่แตกต่างกันทำให้ โรงไฟฟ้าที่ใช้เชื้อเพลิงถ่าน ได้รับการยอมให้มี การปลดปล่อยสารัมมมันตรังสืออกููสสภาพแวดอ้อม ซึ่งถ้าหากว่ามีการปลดปล่อยสารกัมมันตรังสี จำนวนเท่ากันนี้ออกจากโรงงานนิวเคลียร์แล้ว จะต้องได้วับการคัดค้านจากสาธารณชนอย่าง แน่นอน

Gabbard ยังให้ความเห็นต่อไปว่า กากนิวเเคลียร้อันเกิดจากการเผไไหม้ล่านเหล่านี้ กลับได้วับการยอมรับให้มีการปลดบล่อยออกไป โดยไม่มีการควบคุมดูแล ซึ่งจะเป็นการไปไเพิ่ม รังสีในอากาศ ในน้ำ ตลอดจนเข้าไปปนเปื้อน ในวงจรอาหารของมนุษย์อีกด้วย

ชักบินอวกาศ...ฟังฯางนั้

อะไรเดินทางออกนอกโลก? เซื่อแนว่าหลายคนคง ตอบคำถามนี้ไปต่าง ๆ กัน เช่น ภาวะไร้น้ำหนัก ความเรียดด การพุุ่ชนของสะเก็ดดาว หรือ อุกกาบาต การขาดการติดต่อจากโลก การ ควบคุมยานไม่ได้ และการไม่สามารถกลับคืนสู่ โลกได้อีก หรือแม้กระทั่งการเจอะเจอกับ มนุษย์ำงดาว สิ่งเหล่านี้น้กวิจัยด้านอวกาศได้ คาดคะเนถึงปัญหาที่อาจเกิจขึ้นเช่นกัน และ ได้เตรียมหาวิธีป้องกันและแก้ไขอย่าดดีที่สุด ไว้แล้ว แต่มีอยู่อย่างหนึ่งที่ขณะนี้น้กวิจัยกำลัง ให้ความสนใจและศึกษากันอย่างขะมักเขม้น สิ่งนั้นก็ไม่ใชิ่งอี่นไกล คือรังสีคอสมิก นั่นเอง

รังสีคอสมิกเป็นรังสีที่เกิดขึ้นใน อวกาศนอกชั้นบรรยากาศโลก เมื่อรังสืคอสมิก ผ่านชั้นบรรยากาศเข้ามายังผิวโลก พลังงาน ถูกลดลงมา จนกระทั่งไม่อาจทำอันตรายต่อ มนุษย์อย่างรุนแรงจนถึงขั้นเสียชีวิต พบว่า ส่วนของโลกบริเวณเหนือเส้นศูนย์สูตรได้รับ รังสีคอสมิกมากกว่าบริเวณในส่วนอื่นๆ และ

บริเวณที่อยู่สูงกว่าพื้นราบ เช่น ภูเขา ก็จะได้ รับรังสีคอสมิกมากกว่าบริเวณที่อยู่ตำลงไป เช่น หุบเขา พื้นใด้ทะเล เป็นต้น หากมนุษย์ ไปอยู่ในอวกาศอันตรายที่มนุษย์จะได้รับย่อม มากขึ้นอีก เพราะจะได้วับรังสสคคสสิิก โดยไม่มี ชั้นของบรรยากาศโลกป้องกันไว้เลย

นักวิจัยจากห้องปฏิบัติการแปชิฟิด นอร์ทเวสต์ รัฐวอชิงตัน ร่วมกับนักวิจัยจาก มหาวิทยาลัยเทกชัสเอแอนธ์เอ็ม ได้ประดิบฐ๊๊ อุปกรณ์ขึ้นชิ้นหนึ่ง เพื่อตรวจวัดอันตรายของ รังสีคอสมิกที่มี่อ่อมนุษย์อวกาศ อุปกรณชิ้นนี้ เลียนแบบเซลล์ของมนุษย์ โดยบริเวณตรงกลาง เป็นก๊าซความดันต่ำ ที่ออกแบบให้คล้ายส่วน นิวเคลียสของมนุษย์ เครื่องนี้สามารถวัดพลังงาน ของรังสีคอสมิกที่นิวเคลียสของเซลล์เทียม ดูดจับได้ จากนั้นเครื่องจะประเมินอันตรายที่ รังสีคอสมิกกระทำต่อเซลล์มนุษย์จริง อุปกรณ์ ชิ้นดังกล่าวยังสามารถบันทึกจำนวนและขนาด พลังงานของรังสีคอสมิกไว้ได้ทั้งหมดอีกดัวย ได้มีการวางแผนไว้ว่าในการส่งยานอวกาศุ สำรวขของรัสเซียไปดาวอังคาร (Mars 96 space probe) ครั้งต่อไปจะนำอุปกรณชั้นนั้ขั้นไปด้วย ซึ่งข้อมูลที่จะไได้รับเหล่านี้ ช่วยให้นักวิจัย สามารถประเมินอันตรายของรังสีคอสมิกที่มี

ต่อนักบินอวกาศชุดสำรวจดาวอังคารได้ แน่นอนขึ้น

นักบินอวกาศได้ฟังข่าวนี้แล้ว คงยินดี กันถ้วนหน้าเป็นแน่ และสำหรับผู้ที่เพิ่งจะทราบว่า ที่แท้แล้วเราเองก็ได้รับรังสีกันอยู่เป็นประจำ ทุกเมื่อเชื่อวันก็อย่าเพิ่งตกใจหวาดกลัวจนเกินเหตุ เพราะมีผู้วิจัยพบว่า มีคนอยู่กลุ่มหนึ่งที่ได้รับ อันตรายจากการเป็น "โรคกลัวรังสี" มากกว่า อันตรายที่ได้รับจากรังสีจริงๆ เสียอีก ดังนั้น ผู้ที่ยังไม่เข้าใจเรื่องรังสีเท่าไรนัก น่าจะหันมา ศึกษากันอย่างจริงจังจะดีกว่า

จรวดชิวเคลียร์

นับเป็นเวลากว่า 66 ปี มาแล้วตั้งแต่ โรเบิร์ต กอตดารต์ ทดลองใช้เชื้อเพลิงเหลว สำหรับการจุดจรวดไปสู่ท้องฟ้า ปัจจุบันนี้ จรวดที่ใช้ในการส่งยานอวกาศไปนอกโลกก็ยัง คงใช้เชื้อเพลิงเหลวอยู่เช่นเดิม เมื่อคิดเปรียบเทียบความก้าวหน้าใน เรื่องอื่นๆ ในเวลากว่า 60 ปีแล้ว ก็หมายความ ว่าเทคโนโลยีด้านจรวดออกจะล้าสมัยเอา มากๆ จรวดที่ใช้เชื้อเพลิงเหลวนั้นสามารถนำ อวกาศยานออกไปสู่นอกโลกได้ แต่ก็พบว่า ยานอวกาศเหล่านั้นไม่สามารถเดินทางไปได้ ไกลนัก เพราะมีเชื้อเพลิงจำกัด ดังนั้นจึง จำเป็นต้องคิดถึงเรื่องการออกแบบจรวดใหม่ เพื่อให้สามารถเดินทางไปได้ไกลกว่าเดิม แนวคิดใหม่ก็คือน่าจะมีการใช้เทคโนโลยีนิวเคลียร์ ในการสร้างจรวด เรียกว่า จรวดนิวเคลียร์ ความจริงแล้ว เทคโนโลยีนิวเคลียร์ สู่ห้วงอวกาศนั้นก็ไม่ใช่เรื่องใหม่นัก เพราะ นักวิทยาศาสตร์ทั้งจากสหรัฐอเมริกาและ สหภาพโซเวียตได้ใช้อุปกรณ์นิวเคลียร์หลาย รูปแบบในอวกาศยานอยู่แล้ว เช่น อุปกรณ์
radioisotope thermoelectric generator (RTG) ชึ่ใช้สารไไโโโทปรังสี เช่น พลูโโเนียม เป็น องค์ประกอบทำใ้เทิกดความร้อนจำนวนน้อย ๆ จากการสลายตัวของไอโซโทปรังสีนั้นความ ร้อนจะถูกแปลงให้กระแสไฟฟริมาณน้อย ๆ ใน ระดับไม่กี่ว้อยวัตต์ ซึ่งเพียงพอที่จะทำงานบาง ชนิดได้

การติดดั้งเครื่องปฏิกรณ์ปรมาณูใน ดาวเทียมหรืออวกาศยานนั้น ได้มีมาช้านาน แล้วเช่นกัน แต่เป็นการติดตั้งในลักษณะเพื่อ ผลิตพลังงานกระแสไฟฟ้าใช้ในอวกาศยานนั้น เท่านั้น มิได้นำความร้อนจากปฏิกิิิยานิวเคลียร์ มาใช้งานโดยตรง

แนวคิดที่จะสร้างเครื่งงปิิกกณณนินิเฉคียยร์ ให้ทำหน้าที่เครื่องยนต์นิวิคคลียร์ (nuclear engine) ก็ได้มีมาตั้งแต่สมัยริเริ่มโครงการอพอลโลของ สหวัฐเมริกา (ระหว่างปี พ.ศ. 2503-2513) หลักการของแนวคิดนั้นก็คือปฏิกิริยา พิชชันของเชื้อเพลิงนิวเคลียร์ทำให้เกิดความ ร้อนอย่างมาก (4,500 องศาเซลเซียส) ในแท่ง เชื้อเพลิง ความร้อนนี้จะใช้ต้มไฮโดรเจนเหลว ที่บรรจุในลังเก็บใกล้ๆ แกนปฏิกรถ์จนกลาย เป็นก๊าชร้อน และพุ่งออกไปทางท่อที่เตรียมไว้ ด้วยความเร็วสูงถึง 30,000 ฟุตต่อวินาที การ ใช้ความร้อนตัมก๊าชนี้ต่างจากการจุดระเบิดก๊าช

ในวิธีทั่วไปของเครื่องยนต์ แต์ก์ให้ผลคือแรง ขับเคลื่อนมหาศาลโดยใช้ก๊าซจำนวนน้อยกว่า ถึงหนึ่งในลิบส่วนแต่ก็มีปัญหาทางเทคนิคใน ครั้งนั้น คือยังไม่มีวิธีการลำเลียงไฮโดรเจน เหลวเข้าสู่เครื่องยนต์นิวเคลียร์ได้มากและ อย่างต่อเนื่องเพียงพอ ที่จะเดินเครื่องขับเคลื่อน จรวดออกพันแรงโน้มถ่วงของโลกได้ ดังนั้นแม้ เครื่องยนต์จะมีประสิทจิภาพสูงแต่จะสามารถ ใช้ประโยชน์ได้ดีเมื่อยานอวกาศนั้นอยู่ในวง โคจรนอกโลก หวืออยู่ในอวกาศแล้วโดยใช้เเื่อ ปรับทิศทางของยานอวกาศเป็นครั้งคราวเท่านั้น หลังจากปี พ.ศ. 2516 องค์การนาซา ได้รับคำสั่งห้ชะลอกิจกรรมอวกาศลงเนื่องจาก ขาดงบประมาณสนับสนุนเรื่องเครื่องยนต์ นิวเคลียรรจงจลดความสำคัญลง

เวลาผ่านไป 2 ทศวรรษษ จนกระทั่ง้น้นี นี้เองได้มีการประชุมวิชาการที่เมืองอัลบูเฉอร์กี รัฐนิวเม็กิิโกบระเทศสหรูออเมริกา น้กวิทยาศาสตร์ จากโชเวียตรัสเชียกลุ่มหนึ่งได้เสนอรายงาน ถึงความพยายามพัฒนาจรวดนิวเคลียร์ของ โซเวียตในเวลาที่ผ่านมาพร้อมเสนอรูปลักษณ์ ของต้นแบบจรวดดังกล่าวให้ชาวโลกได้ทราบ เครื่องยนต์นิวเคลียรร้ด้นแบบชุดนี้สามารณเดิน เครื่งงที่อุณหมูมิสูงกึง 5,100 องศาเซลเชียส และติเเดรื่องใช้งานได้ต่อเนื่องนานกว่า 1 ชั่วโมง
เคล็ดลับของการที่สามารถเดินเครื่อง ปฏิกรณ์ที่อุณหภูมิสูงได้ก็คือการเปลี่ยน ลักษณะของแท่งเชื้อเพลิงนิวเคลียร์ จากเดิมที่ เป็นแท่งยูเรเนียมคาร์ไบด์ มาเป็นแบบแท่ง เซอร์โคเนียมคาร์ไบด์ จึงมีคุณสมบัติทนความ ร้อนได้ดีโดยตัวของมันเองโดยไม่เสียรูปร่าง
เมื่อได้เทคโนโลยีเช่นนี้ นักวิชาการก็
เริ่มฝันหวังว่าต่อไปภายภาคหน้า โครงการบุก อวกาศจะย้อนกลับมาใหม่โดยใช้พลังขับเคลื่อน จากจรวดนิวเคลียร์ในการท่องจักรวาลต่อไป ท่านนักวิทยาศาสตร์ผู้เยาว์ที่มีความฝัน ความหวัง และรักการเผชิญภัย เตรียมตัว สมัครเป็นมนุษย์อวกาศได้แล้วนะครับ

ความจับจากสุริยเทต

เมื่อเดือนตุลาคม พ.ศ. 2538 ใน ประเทศไทยได้มีปรากฏการณ์สุริยคราสเต็มดวง ซึ่งชาวไทยจำนวนมากได้ติดตามดูอย่างตื่นเต้น ในปีนั้นเองประเทศอินเดียก็ได้มีโอกาสชื่นชม กับสุริยคราสเต็มดวงจากดวงอาทิตย์ดวง เดียวกัน นอกเหนือจากความประทับใจจาก ปรากฏการณ์ธรรมชาติแล้ว นักวิทยาศาสตร์ อินเดียในรัฐราชาสถานได้ทำการศึกษาเรื่องราว เกี่ยวกับดวงอาทิตย์ 11 โครงการเพื่อเพิ่มความรู้ เรื่องปฏิกิริยาฟิวชันในดวงอาทิตย์ การเกิดและ คงตัวได้ของ "พลาสมา" ซึ่งเป็นสถานะที่สี่ของ สสาร (นอกเหนือจากของแข็ง ของเหลว และ ก๊าซ) พลาสมาต่างจากก๊าชตรงที่พลาสมาเกิด ที่อุณหภูมิสูง โดยอิเล็กตรอนหลุดจากอะตอม ไปเลย พลาสมามีความสามารถนำไฟฟ้าได้ และจะคงตัวได้ในสนามแม่เหล็ก
โครงการหนึ่งของนักวิทยาศาสตร์

อินเดียกลุ่มนี้ กระทำโดยการตรวจสอบ Solar Corona ที่มีขนาดเป็นแถบกว้าง 2,000 กิโลเมตร และมีพลังสูงถึงหนึ่งล้านองศาเซลเซียส นอกจากนั้นยังทำการวัดเส้นผ่าศูนย์กลางของ

ดวงอาทิต์ด้วย ผลการศึกษาครั้งนี้จะนำไป สรุปไปรียบเทียบผลกับการเทิดสุริยคราสเต็มดวง ในอินเดียในคราวหน้าที่จะเกิดขึ้นในรัฐกุรุราช ตลอดถึงรัฐอัตรประเทศ ในอีก 40 ปีข้างหน้า

ถึงเวลานั้น ประเทศไทยคงประสบ ผลสำเร็จในการเดินเครื่องโรงไฟฟ้านิวเคลียร์ ฟิวชันแล้วกระมัง

อินเดียกับฯรายชาษหาด

Abstract

ค เป็นเรื่องธรรมดาถ้าผู้คนจะ 2 ชื่นชมความงามของหาดทรายชายทะเล โดย เฉพาะในที่ที่มีทิวทัศน์ร์มรี่นและอากาศบิิิุุธิ์ แต่จะดีกว่าไหมถ้าทรายชายหาดนั้นเองมี คุณค่าเป็นต้นกำเนิดพลังงานได้

ครับ เป็นไปได้ครับ ที่ทรายชายหาด จากรัฐ kerala ประเทศอินเดีย ซึ่งให้โดสที่ พี้นทราย 300 ไมโครเริทท์เนนต่อช่วโมง (และ ยังมีที่วัรื่อน่นๆ อีก) สามารถใช้เเ็นเชื้อเพลิง ในเคื่่องปฏิกรณ์ปรมาณู่ได้

ปกติแล้วเชื้อเพลิงนิวเคลียร์สำหรับ เครื่องปฏิกริณ์ปรมาณูคือ ยูเรเนียม แต่ใน กรณีของทรายชายหาดที่กล่าวข้างต้นนั้นมี องค์ประกอบเป็นแร่โมนาไชต์ึึชชมีีาดุทอเรียม เป็นส่วนประกอบด้วย

ได้มีการประมาณการว่าประเทศ
อินเดียมีทอเรียมเป็นจำนวนมากแม่มียูเรเนียม ไม่มากนัก ดังนั้นโดยความเชื่อที่ว่าทอเรียมซึ่ง

เป็นธาตุกัมมันตรังสีในธรรมชาติเช่นเดียวกับ ยูรเนียม สามารถนำมาใชชเเป็นชื้อเพลิงนิวเคลียร์ ได้เช่นเดียวกัน ทำให้นักวิทยาศาสตร์อินเดียได้ ใช้ความพยายามอย่างยิ่งยวดทั้งด้านการคิด คำนวณทางทฤษฎีและการทดลองปฏิบัดัที่จะ ทำความเชื่อนั้นให้เป็นความจริง

ผลของความพยายามแสนเข็ญเริ่ม ปรากรููป่างแล้วครับ โดยทางการอินเดียได้ สร้างเครื่องปฏิกรณ์ต้นแบบที่ใช้เชื้อเพลิง นิวเเลลียร์จากทอเรียมแล้วเสร็จชื่อว่าเครื่อง ปฏิกรณ์ Kamini มีขนาด 30 กิโลวัตต์ไฟฟ้า ณ ศูนย์วิจับอินทิรา คานธี เขตเมืองคัลปากคัม รัฐทามิล นาดู

เครื่องปฏิกรณ์ Kamini จะใช้ในการ วิเคราะห์เชื้อเพลิงนิวเคลียร์ที่ใช้แล้วของ เครื่องปฏิกรณ์ทดลองปฏิกรณ์นิวเคลียร์ บรีดเดอร์ดันแบบ (Fast Breeder Test Reactor) ที่เมืองคัลปากคัม ซึ่งขบวนการทั้งหมดหาก สำเร็จตามเป้าหมาย จะทำให้ที่พังอินเดียกลาย เป็นประเทศที่สามารถดำเนินการไฟฟ้า นิวเคลียร์ครบวงจร ซึ่งรวมถึงการทำเหมืองแร่ การแยกยูยรเนียม/ทอเรียม การทำแท่งเซื้อเพลิง การเดินเครี่องปิิกรณ์ที่เมดอินอินเดีย การแยก

และคืนสภาพเชื้อเพลิงนิวเคลียร์ และการแปลง เชื้อเพลิงนิวเคลียร์

สำหรับพี่ไทยก็มีแร่โมนาไซต์มาก เหมือนกัน น่าจะเริ่มจับตามองอินเดียอย่างใกล้ชิด ยิ่งขึ้นดีไหมครับ

เชี้อเพลิงนิวเคลียร็จาก
 หาตะเด

เนื่องจากประเทศถุ่ปุ่นเป็นประเทศที่ ขาดแคลนทรัพยากรแร่ธาตุและต้นกำเนิด พลังงานล้วนแล้วแต่ต้องซื้อหามาในราคาแพง ซึ่งย่อมรวมทั้งเซื้อเพลิงนิวเคลียรร์ด้วย และ โดยที่เป็นที่ทราบกันแล้ว่ว่าในน้ำทะเลทั่วไปนั้น มีแร่าาุุนานาชนิดปะปนอยู่รวมทั้งธาตูยรเรนนียม ชึ่งเปนต้นกำเนิดเชื้อเพลิงนิ้วเคลียรด้ว้อปริมาณ ธาตุยูเรเนียมในน้ำทะเลเม้มีเพียงน้อยนิด แต่ หากสามารถทำให้เข้มขันขึ้นได้ก็มีคุณค่าสูงได้ นักวิทยาศาสตร์ชาวญี่ปุ่นจึงได้ศึกษาค้นคว้า และพัฒนาขบวนการแยกธาดุยูเรเนียมจาก น้ำทะเลอย่างจริจังกกระทั่งประสบผลลำเร็จ ขบวนการแยกยูเรเนียมจากน้ำทะเล กระทำโดยวิธีการดูดชับยูยเเเนียมด้วยสารดูดชับ ชนิดที่เป็นของแข็ง ตัวดูดชับดังกล่าวเป็นสาร โพลีเมอร์ที่ปประกอบด้วยกลุ่มอนุมูล amidocime ซึ่งสามารถเกิดเป็นสารประกอบเชิงช้อนกับ อนุููล urany 1 tricarbonate complex ที่อยู่ ในน้ำทะเลได้ สารโพลีเมอรี้ได้จากการฉาย รังสีเส้นใยโพลีเอทิลืนและโพลีอาไครโลไนตรีล ชึ่งะะแปรสภาพอนุมูล cyaano group บางส่วน ของโพลีอาไครโลตรีลเป็นอามิดิอกไชม์

จากการทดลองดูดชับยูเรเนียมจาก น้ำทะเลโดยาารสูบน้ำทะเล และปล่อยผ่านชุด ดูดชับยูเรเนียมขนาดคววมยาว 90 เซนติเมตร เป็นเวลาต่อเนื่องกันนาน 30 วัน ปรากฏผลว่า ชุดดูดชับดังกล่าวสามารถเพิ่มปปริมาณ ยูเรเนียมไไ้ 0.1 เปอร์เซ็นต์ (0.3 กรัม ของ ยูเรเนียม ต่อ 1 กิโลกรัมของตัวดูดชับ) สืบเนื่องจากการทดลองดังกล่าว นาย โนบุกววา (Mr. Nobukawa) ได้แนะนำห้ใช้ วิธีนำเอาชุดดูดชับยูเรเนียมจำนวนมากไปจุ่ม แช่น้ำทะเลเป็นเวลานานๆ ซึ่งะะำให้สามารถ สะสมยูรเเนียมจากน้ำทะเลได้มากขั้น โดยคาดว่า ชุดดูดชับยูเรเนียมจะกักเก็บยูเรเนียมไว้ได้ ประมาณ 0.1 เปอร์เซ็นต์เท่านั้น ซึ่งหากจะคิด เป็นมูลค่าการผลิตยูเรเนียมแล้วจะทำให้ ยูเรเนียมฟิ์ได้มีราคาสูงถึงกิโโกรัมละ 10,750 บาท ชึ่สสูงเป็น 5 เท่าของราคายูยรเนียมจากเหมืองแร่ ที่ซื้อาายในัจัจุัน (ราคา 1,750 บาทต่อกิโโกรัม) อย่าไไร็์ตามราคายูเรเนียมดังกล่าวนี้ก็ไม่นับว่า แพงนักเมื่อเปรียบเทียบกับมูลค่าของการ ก่อสร้าง และการเดินเครื่งโรงไฟฟ้านิวเฉลียร์ ด้วยเหตุนี้มี่มุ่มุงงตั้งอกตั้งใจที่จะพัพนาขบวน การผลิดเชื้อเพลิงนิวเคลี่ยร์จากน้ำทะเลต่อไป สำหรับประเทศไทย ก็คงรอติดตาม ข่าวโดยใกล้ชิดก็เล้วกันครับ

๓อกไม้ฯะเดคุดไุ่

คุณทราบหรือไม่ว่า สิ่งมีชีวิตอะไรที่ มีอายุยืนยาวที่สุดในโลก คำตอบที่นักวิทยาศาสตร์ เฉลยไว้ขณะนี้ก็คือ ดอกไม้ทะเลพันธุ์ที่มีชื่อว่า Gerardia

เมื่อมาดูึึวิีีีชิวิตของดอกไม้ทะเลกัน แล้ว จะเห็นได้ว่าที่ที่มันอาศัยอยู่นั้นคือ พื้น ทะเลลึกที่มืดมิดด้วยแสงส่องผ่านชั้นน้ำลงไป ไม่ถึง อาหารที่มันกินก็ใช่ว่ามันจะออกร่อนเร่ เสาะหาเอาเองแต่กลับรอให้อาหารลอยตามน้ำ มายังที่ที่มันอยู่แทน ซึ่งว่าไปแล้วก็คงมีมาไม่ มากเท่าไรนัก อย่างไรก็ตามปริมาณของอาหาร ไม่ได้มีความสำคัญเท่ากับคุณภาพของอาหาร ชีวิตที่เรียบง่ายเช่นนี้ของดอกไม้ทะเล Gerardia จึงกลับทำให้มันกลายเป็นสิ่งมีชีวิต ที่มีชีวิตยืนยาวที่สุดในโลก และหมายถึงว่ามัน กลายเป็นตัวแทนของสิ่งมีชีวิตใต้ทะเลที่มีอายุ ยืนยาวกว่าทุกชนิดเท่าที่ได้มีการตรวจพบใน ขณะนี้
เรื่องราวของดอกไม้ทะเลคุณปู่ เกิด

ขึ้นเมื่อเรือดำน้ำของกองทัพเรืออเมริกันนาม ว่า Alvin ได้เก็บตัวอย่างของดอกไม้ทะเล

Gerardia จำนวน 3 ตัวอย่างที่บริเวณใกล้ หมู่เกาะบาฮามา เมื่อปี 1982 ตัวอย่างดอกไม้ ทะเลเหล่านี้เก็บที่ความลึก 620 เมตร จาก ผิวน้ำ ซึ่งนับว่าลึกมากทีเดียว จากนั้นคณะวิจัย จากมหาวิทยาลัยแห่งแคลิฟอร์เนีย วิทยาเขต Irvine ซึ่งนำโดย Ellen Druffel ก็ได้นำมา ศึกษาวิจัยและรายงานไว้ในวารสาร วิทยาศาสตร์ฉบับหนึ่ง (Geochimica et Cosmochimica Acta vol. 59, p5031) ถึงผล การศึกษาของพวกเขาซึ่งพบว่าตัวอย่างดอกไม้ ทะเลดังกล่าวนั้นมีอายุอยู่ในระหว่าง $1,500-$ 2,100 ปี คือใช้ชีวิตตั้งแต่ยุคโรมันมาจนถึง ยุคปัจจุบันซึ่งเป็นเรื่องที่ทำให้นักวิทยาศาสตร์ ในวงการให้ความสนใจกันอย่างกว้างขวางมาก ดอกไม้ทะเลเป็นพ่วกเดียวกับปะการัง จึงมีชีวิตที่คล้ายคลึงกัน กล่าวคือ ประกอบด้วย กลุ่มสัตว์ตัวเล็กๆ มาอยู่รวมกัน เรียกว่า Polyps มันจะอยู่เบียดเสียดอัดกันแน่น ตาย ไปและทับถมช้อนกันเป็นชั้นๆ จนท้ายที่สุดมี รูปร่างคล้ายกับต้นไม้ คือมีลำต้นและกิ่งก้าน ยื่นออกมา คณะนักวิจัยคำนวณอายุที่แท้จริง ของตัวอย่างดอกไม้ทะเล ด้วยวิธีวัดปริมาณ คาร์บอน-14 ซึ่งเป็นไอโซโทปรังสีของธาตุ คาร์บอน พวกเขาเลือกตัดชิ้นส่วนของดอกไม้ ทะเลในตำแหน่งต่างๆ และรวมถึงชั้นด้านในสุด

ซึ่งเป็นบริเวณที่มีอายุมากที่สุดด้วย จากปริมาณ ของคาร์บอน -14 ที่วัดได้เมื่อนำมาคำนวณ เทียบกับค่าครึ่งชีวิตของธาตุรังสีคาร์บอน -14 จึงทำให้เรารู้ถึงอายุที่แท้จริงของดอกไม้ทะเล Gerardia (ค่าครึ่งชีวิต คือ เวลาที่สารรังสี สลายตัวจนเหลือปริมาณเพียงครึ่งหนึ่งของ ปริมาณตั้งต้น) Fred Grassle ผู้อำนวยการ สถาบันสมุทรศาสตร์และชายฝั่งทะเล แห่งมหาวิทยาลัย Rutgers รัฐนิวเจอร์ซี กล่าวถึง งานวิจัยชิ้นนี้ว่า "เป็นเรื่องที่ผมประหลาดใจมาก และรู้สึกว่าน่าตื่นเตันด้วย" ในขณะที่ Ted Bayer นักสัตววิทยาแห่งสถาบันสมิธโซเนียน กรุง วอชิงตันดีซี ให้ความเห็นว่า ปะการังเขากวาง ก็อาจจะมีอายุนับพันปีได้เช่นกัน เพียงแต่ว่า ยังไม่มีนักวิทยาศาสตร์ท่านใดนำมาศึกษา อย่างไรก็ตาม เท่าที่เคยมีนักวิทยาศาสตร์ศึกษามา พบว่า ปะการังมีอายุหลายร้อยปี แต่ยังไม่เคย พบตัวอย่างปะการังที่มีอายุถึงพันปีเลย ในขณะนี้ดอกไม้ทะเล Gerardia จึงถูกบันทึก ไว้ว่าเป็นสิ่งที่มีชีวิตที่มีอายุยืนยาวที่สุด การดำรงชีวิตของดอกไม้ทะเลนั้น ขึ้นอยู่กับสภาวะแวดล้อมเป็นสำคัญ หากสภาวะ แวดล้อมไม่เป็นพิษ มันก็สามารถมีชีวิตอยู่ได้ ตลอดไปไม่จำกัดเวลา เนื่องจากมันสืบพันธุ์ได้ ทั้งแบบอาศัยเพศและแบบไม่อาศัยเพศ

นักวิทยาศาสตร์จึงได้ประโยชน์อีกอย่างหนึ่ง จากงานวิจัยชิ้นนี้นั่นคือ นำมาใช้ศึกษาถึงสภาพ ท้องทะเลตลอดช่วงเวลาในอดีต เนื่องจาก คาร์บอนที่อยู่ในโครงสร้างของดอกไม้ทะเล ย่อมมาจากอาหารที่มันกิน ซึ่งได้แก่ แพลงก์ตอน และเศษสารอินทรีย์ที่มาจากที่ต่าง ๆ และ จับตัวจมลงสู่พื้นทะเล ดอกไม้ทะเลคุณปู่จึง นับเป็นแคปซูลเวลาชิ้นสำคัญอีกชิ้นหนึ่งที่บันทึก เรื่องราวของท้องทะเลไว้ตลอดเวลาสองพันปี ที่ผ่านมา

ความปล๐ดอัยชางभิวเคตียร์

ปัญหาหนึ่งของการมีโรงไฟฟ้านิวเคลียร์ คือการเกิดอุบัติเหตุซึ่งอาจทำให้มีคนตาย ทำนองเดียวกับการขึ้นเครื่องบิน และมีคนที่ไม่กล้า ขึ้นเครื่องบิน แต่คนที่กล้าขึ้นก็มีอยู่มาก และ ถ้ามีการแจกตั๋วเครื่องบินฟรี คงไม่ใคร่มีคน ปฏิเสธเพราะกลัวเครื่องบินตก

อุบัติเหตุที่มีคนตายมากกว่าเครื่องบินตก คือ อุบัติเหตุทางรถยนต์ ซึ่งคนตายไม่จำเป็น ต้องนั่งรถยนต์ จากสถิติที่ทางราชการเปิดเผย มีคนตายเพราะรถยนต์ในประเทศไทยประมาณ 15,000 คนต่อปีและจะมีการตายขนาดนี้ไป เรื่อยๆ ทุกปี

อุบัติเหตุในโรงไฟฟ้านิวเคลียร์นั้นไม่ได้ เกิดบ่อยๆ ตั้งแต่มีการใช้โรงไฟฟ้านิวเคลียร์ ในโลกนี้มาหลายสิบปี

การเกิดพายุไต้ฝุ่นในอ่าวไทยนั้น ผู้เชี่ยวชาญกล่าวว่า ใน 100 ปีที่ผ่านมาเคย เกิด 3 ครั้ง จากตัวเลขนี้อาจคิดเลขได้ว่า โดย เฉลี่ยแล้วพายุไต้ฝุ้นทำให้คนไทยตายไป $20-30$ คนต่อปี

ส่วนการมีโรงไฟฟ้านิวเคลียร์ 1 โรงนั้น มีผู้คำนวณได้ว่า โดยเฉลี่ยแล้วจะทำให้คนตาย ไม่ใคร่เกิน 0.1 คนต่อปี

ควรสังเกตว่า สำหรับพายุไต้ฝุ่น และ โรงไฟฟ้านิวเคลียร์นั้นตัวเลขเป็นค่าเฉลี่ยต่อปี ความจริงแล้วคนมิได้ตายในทุกปี พอเกิดเหตุ ครั้งหนึ่งก็ตายพร้อมๆ กันเสียงวดหนึ่ง ซึ่ง ทำให้เป็นข่าวใหญ่น่าตื่นเต้น เปรียบได้กับการ ซื้อลอตเตอรี่ ซึ่งไม่หวังมากสำหรับรางวัลใหญ่ ๆ แต่ถ้าเกิดถูกก็อาจตกใจเป็นลมพับไป

เอกสารอ้างอิง

I จาก "Does a little radiation do you good" ATOM (No. 378) โดยปฐม
II นิวเคลียร์ปกิณกะ, โดย ปูนา
III จาก Nucnet News. (No. 564/94) โดย วิทยา รัชตาธิบดี

IV จาก รายงานข่าววิทยาศาสตร์ และเทคโนโลยี จากวอชิงตัน สำนักงานที่ปรึกษาด้าน วิทยาศาสตร์และเทคโนโลยี ประจำสถาน เอกอัครราชทูต ฉบับที่ 40/2537.
V จาก "Cosmic-ray count" New Scientist.
(No. 2052) โดย บุญสม พรเทพเกษมสันต์
VI นิวเคลียร์ปกิณกะ. โดย ปูนา
VII นิวเคลียร์ปกิณกะ. โดย ปูนา
VIII นิวเคลียร์ปกิณกะ. โดย ปูนา
IX นิวเคลียร์ปกิณกะ. โดย ปูนา
X จาก "Ancient anemones are historians of the deep" New Scientist (No. 2015) โดย บุญสม พรเทพเกษมสันต์
XI ค. วิชัย หโยดม (2533)

เอกสาร "Atom Variety I"

จัดทำโดย งานเผยแพร่และการประชาสัมพันธ์ สำนักงานปรมาณูเพื่อสันติ กระทรวงวิทยาศาสตร์และเทคโนโลยี

พิมพที่โรงพิมพ สกสค. ลาดพร้าว
 m Variety Atom Variety Atom Variety Atom Variety Atom Variety

งานเผยแพร่และกกระ ระษ่าสัมพันธ์ ส่านักงคนปรมาภแพื่อส้นติ
กระทรวงคิทยาคคสตรและเทคโโนโลยี่

โทร. 02579 5230, 025967600
Thรสาร 0 2561 3013
wwioaep.goith

Th上, 0 2579 1824, 02579 1834, 025791849,025792838

เด้งเหตูฉกำดินตางรัสีส

 0892006243 (24 *)

